**Review Papers** 

## **TERNARY CHLORIDES OF THE TRIVALENT LATE LANTHANIDES Phase diagrams, crystal structures and thermodynamic properties**

## H. J. Seifert<sup>\*</sup>

Inorganic Chemistry, University Kassel, Auf der Höh 7, 35619 Braunfels, Germany

A comprehensive review on phase diagrams, crystal structures and thermodynamic properties of ternary chlorides formed in the systems ACl/LnCl<sub>3</sub> (A=Na, K, Rb, Cs) is presented. It continues an earlier review with the same contents on the lanthanides from La to Gd [1]. In both papers the author's own studies, published since 1985, together with original papers from other scientists are treated. With the three larger cations compounds of the composition A<sub>3</sub>LnCl<sub>6</sub>, A<sub>2</sub>LnCl<sub>5</sub>, ALn<sub>2</sub>Cl<sub>7</sub> and beginning with holmium Cs<sub>3</sub>Ln<sub>2</sub>Cl<sub>9</sub> are formed. With sodium the compounds Na<sub>3</sub>Ln<sub>5</sub>Cl<sub>18</sub> (*Ln*=La to Sm) and NaLnCl<sub>4</sub> (*Ln*=Eu to Lu) also exist. The stability of a ternary chloride in a system ACl/LnCl<sub>3</sub> is given by the 'free enthalpy of synreaction', the formation of a compound from its neighbour compounds in its system. This  $\Delta G_{syn}^0$  must be negative. A surprising result is that the highest – melting compounds in the systems, A<sub>3</sub>LnCl<sub>6</sub>, are formed from ACl and A<sub>2</sub>LnCl<sub>5</sub> with a loss of lattice energy, *U*. They exist as high-temperature compounds due to a sufficiently high gain in entropy at temperatures where the entropy term *T*\Delta*S* compensates the endothermic  $\Delta H$ .

Keywords: alkali-metal, crystal structures, phase diagrams, lanthanide ions, ternary chlorides, thermodynamic data

### Introduction

Recently a comprehensive review on phase diagrams, crystal structures and thermodynamics of ternary chlorides formed in systems ACl–LnCl<sub>3</sub> (*A*=Na, K, Rb, Cs; *Ln*=La–Gd) was published in this journal [1]. The paper summarized the authors own studies, published since 1985, and original papers of other scientists. The present compilation completes this synopsis with the heavier lanthanide metals, including yttrium, where the ionic radius of its trivalent cation is comparable with those of holmium and erbium.

Again we have elucidated the phase diagrams with DTA using samples of ~0.5 g, encapsulated in quartz ampoules. This technique allows for the annealing of samples after quenching them from the melt or from existing high-temperature phases, so that heating curves and also X-ray powder patterns could be performed with material in the stable state. Because LiCl melts react with quartz, systems LiCl–LnCl<sub>3</sub> were excluded. A special problem in such investigations is the identification of the kind of solid-state reactions; the DTA-peak alone only tells us that such a reaction has occurred, but does not distinguish between a polymorphic structure transformation, decomposition or formation reaction.

We have measured such  $\Delta G vs. T$  curves with galvanic cells for solid electrolytes using the relation  $\Delta G = -nFE$ , with E = e.m.f. of the cell, n = transported charge, F = Faraday constant. The set up of the cells is: (graphite, Cl<sub>2</sub>)/ACl/A<sup>+</sup>-conducting diaphragm/LnCl<sub>3</sub> (or A<sub>n</sub>LnCl<sub>3+n</sub>)/(graphite+Cl<sub>2</sub>). In all measurements the dependence of E on T has proven to be linear in temperature ranges between ~280 to ~500°C, where E = a + bT. By multiplication of the found regression equation with -nF the Gibbs–Helmholtz equation for the reaction ACl+LnCl<sub>3</sub>=A<sub>n</sub>LnCl<sub>3+n</sub> was obtained,  $\Delta G_r^0 = \Delta H_r^0 - T\Delta S_r^0$ , with enthalpy and entropy independent on the temperature. As well,  $\Delta H_r^0$  at T = 298 K was measured by solution calorimetry.

In Table 1 our publications, which contain the results on ternary chlorides of the late lanthanides and yttrium are compiled.

One suitable method to solve this problem is high-temperature X-ray analysis. Another, more profound way, is the measurement of  $\Delta G_{\rm T}$  vs. *T* curves. The exact temperature of a solid-state transition, 'phase I $\Rightarrow$ phase II' is given by  $\Delta G_{\rm I}=\Delta G_{\rm II}$ . In case of decomposition, I $\rightarrow$ components,  $\Delta G_{\rm T}$  is 0 at temperatures  $\geq T_{\rm t}$ ; if a high-temperature phase II is formed from its components  $\Delta G_{\rm T}$  is 0 when  $T \leq T_{\rm t}$ .

<sup>\*</sup> thomas.scherer@online.de

| <b>Table 1</b> A list of the investigations on ternary lanthanide |  |
|-------------------------------------------------------------------|--|
| chlorides carried out in our laboratory                           |  |

| A: The systems ACl/LnCl <sub>3</sub> with A=Cs, Rb, K                                                                                                                                                                                                             |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1995: Systems ACl/TbCl <sub>3</sub><br>1994: Systems ACl/DyCl <sub>3</sub>                                                                                                                                                                                        | [2]<br>[3]                  |
| 1997: Systems ACl/HoCl <sub>3</sub>                                                                                                                                                                                                                               | [4]                         |
| 1998: Systems ACI/YCl <sub>3</sub><br>1995: Systems CsCl, RbCl/ErCl <sub>3</sub>                                                                                                                                                                                  | [5]<br>[6]                  |
| 2001: System KCl/ErCl <sub>3</sub>                                                                                                                                                                                                                                | [7]                         |
| 1998: Systems ACl/TmCl <sub>3</sub><br>1998: Systems ACl/YbCl <sub>3</sub>                                                                                                                                                                                        | [8]<br>[9]                  |
| B: The systems NaCl/LnCl <sub>3</sub>                                                                                                                                                                                                                             |                             |
| 1995: Systems NaCl/TbCl, DyCl <sub>3</sub><br>1997: Systems NaCl/HoCl <sub>3</sub> , ErCl <sub>3</sub><br>1999: Systems NaCl/TmCl <sub>3</sub> , YbCl <sub>3</sub> , LuCl <sub>3</sub><br>1998: System NaCl/YCl <sub>3</sub>                                      | [10]<br>[11]<br>[12]<br>[5] |
| C: Ternary chlorides from solutions                                                                                                                                                                                                                               |                             |
| 1995: Compounds Cs <sub>3</sub> LnCl <sub>6</sub> ·3H <sub>2</sub> O ( <i>Ln</i> =La–Nd)<br>1996: Compounds Cs <sub>4</sub> LnCl <sub>7</sub> ( <i>Ln</i> =Ho–Yb)<br>1997: Compounds Cs <sub>3</sub> LnCl <sub>6</sub> ( <i>Ln</i> =Na–Yb)<br>in space group Pbcm | [13]<br>[14]<br>[15]        |
|                                                                                                                                                                                                                                                                   |                             |

# Phase diagrams of systems ACl/LnCl<sub>3</sub> (*Ln*=Tb–Lu, Y)

#### Literature survey

The pioneer-work in elucidating phase diagrams of systems ACl/LnCl<sub>3</sub> with the late lanthanides from terbium to lutetium was done in the years 1964 to 1969, mainly at the Lomonosov University in Moscow (I. S. Morosov, B. G. Korshunov, D. V. Drobot *et al.*). This work treated all the NaCl/LnCl<sub>3</sub> and KCl/LnCl<sub>3</sub> systems, excluding only the systems with thulium, and the systems of the rare earth element yttrium with RbCl [16] and CsCl [17]. A synopsis of the results was given by Drobot *et al.* [18], in a paper on systems with LuCl<sub>3</sub>.

More extensive summaries about chloride systems up to 1977 can be found in the handbook of Gmelin [19] or in the monograph of Prosypaiko and Allseeva [20].

The above-mentioned investigations were performed with the visual-polythermal method. The temperature-time curves were recorded on a Kurnakov apparatus. It is a feature of this technique that it gives good results for the liquidus lines and thus for the existence of congruently melting compounds, however, data about the composition of incongruently melting compounds are sometimes doubtful (e.g. KDy<sub>3</sub>Cl<sub>10</sub> instead of KDy<sub>2</sub>Cl<sub>7</sub> [21]). Furthermore, solid-state reactions with small reaction enthalpies were often overlooked. As a consequence, all investigated systems with NaCl are incomplete.

Taxometric models about the number of existing compounds in LnCl<sub>3</sub>-systems were already discussed in 1968 by Korshunov *et al.* [18], later by Morozow [22] and in 1974 by Schneider [23]. However, crystal structures were not considered in any of the papers.

In 1979 Blachnik and Selle [24] elucidated the systems CsCl/LnCl<sub>3</sub> (with *Ln*=Dy, Er, Yb, Pr) and the system KCl/DyCl<sub>3</sub> by the DTA-technique as a basis for the measurement of the thermodynamic data by solution calorimetry. Likewise, the teams of Gaune–Escard in Marseille and of Rycerz in Wrocław were also engaged in thermodynamic problems concerning lanthanide halides. They measured mixing enthalpies of the systems ACl–DyCl<sub>3</sub> [25], ACl–TbCl<sub>3</sub> [26] and calculated formation enthalpies of the liquid ternary chlorides.

In 1992 Qiao *et al.* [27] investigated all phase diagrams of ACl/YCl<sub>3</sub> by combining thermodynamic and taxometric reflections. To the best of our knowledge these were the last investigations on systems with the trichlorides of the heavier lanthanide metals.

#### The binary chlorides LnCl<sub>3</sub>

The preparation of anhydrous chlorides of the late lanthanides is more difficult than that of the early ones. Because of the shrinking ionic radii, their Pearson-acidity and by this their sensitivity to hydrolysis increases. Korshunov and Drobot [21] prepared the chlorides by chlorinating the oxides with carbon tetrachloride [28] while Morozov [29] started with the hydrated chlorides LnCl<sub>3</sub>·6H<sub>2</sub>O, which were mixed with ammonium chloride in the ratio 2:1 and slowly heated in a stream of dry chlorine to the melting point of the chloride. In 1978 Mochinaga et al. [30] prepared anhydrous LnCl<sub>3</sub> by reacting of the oxides with NH<sub>4</sub>Cl at 350°C and purified the crude products by sublimation under reduced pressure. The same method was applied in 1969 by Schneider [31] and later by Blachnik. Meyer [32] applied both, the 'wet and the dry ammonium chloride route', for the preparation of YCl<sub>3</sub>. He investigated the existing intermediates and in 1989 he published a detailed prescription for this method [33].

The hexahydrates of the lanthanide-trichlorides can be dehydrated in vacuo to trihydrates LnCl<sub>3</sub>·3H<sub>2</sub>O at temperatures below 100°C without hydrolysis. Two exceptions are the compounds of Ho and Y; here at ~70°C dihydrates are formed. Further dehydration must occur in a stream of HCl. The temperatures must be raised slowly so that the next steps of dehydration, the formation of di- and monohydrates of Tb and Er or directly monohydrates of the other lanthanides, and eventually anhydrous LnCl<sub>3</sub>, do not start before the foregoing step is completed. We have determined the respective temperatures by thermogravimetry and preparative work together with X-ray control [34]. For YbCl<sub>3</sub>·H<sub>2</sub>O the final temperatures are between 280 and 350°C. The time for dehydrating ~10 g monohydrates is approximately three days. A more convenient procedure is to heat anhydrous formates, Ln(HCOO)<sub>3</sub>, in a stream of HCl for ~20 h to 250-320°C [4, 5, 8]. The formates can be obtained for all lanthanides, except Yb and Lu, as precipitates when boiling the hexahydrates in concentrated formic acid.

The anhydrous chlorides LnCl<sub>3</sub> (Ln=La–Gd) crystallize in the UCl<sub>3</sub>-type [35] where the Ln<sup>3+</sup> ions are coordinated by nine chloride ions; for Ln=Ho–Lu the coordination number (CN) is six in the layer structure of the ACl<sub>3</sub>-type [36].

In the polymorphic TbCl<sub>3</sub> [37] the L-modification crystallizes with the UCl<sub>3</sub>-structure, the M-modification in the PuBr<sub>3</sub>-type (CN=8). The transition L $\rightarrow$ M at ~360°C is irreversible for kinetic reasons. Thus, the UCl<sub>3</sub>-type is formed only by preparation of TbCl<sub>3</sub> below 360°C, either by dehydration of TbCl<sub>3</sub>·H<sub>2</sub>O or by deposition from the gaseous phase. On cooling, M-TbCl<sub>3</sub> remains metastable at ambient temperature. In 1988 Simon and Urland [38] found an H-TbCl<sub>3</sub>, stable at *T*>517°C. It crystallizes in S.G.P4<sub>2</sub>/mnm and is built up by double-octahedra, linked together as in the trirutile-structure AB<sub>2</sub>X<sub>6</sub> with empty positions of *A*. The transition M $\rightarrow$ H is reversible with a large transition enthalpy of 23.1±4.6 kJ mol<sup>-1</sup> at 793 K [39].

Dysprosiumchloride is dimorphic. L-DyCl<sub>3</sub> (PuBr<sub>3</sub>-type) transforms at 342°C to H-DyCl<sub>3</sub> (AlCl<sub>3</sub>type). In DTA cooling-curves the transition-temperature is 270°C. When quenching molten or H-DyCl<sub>3</sub>, a metastable hexagonal phase is formed [3]. If it is heated again in a DTA apparatus it is transformed at ~240°C to the stable PuBr<sub>3</sub>-phase. The transition enthalpy is exothermic; the difference between the solution enthalpies of L-DyCl<sub>3</sub> (-197.1 kJ mol<sup>-1</sup>) and metastable DyCl<sub>3</sub> (-205.0 kJ mol<sup>-1</sup>) is  $\Delta H_{tr}^0$  (298)= -7.9 kJ mol<sup>-1</sup>. Such metastable phases with strongly distorted layers of the ACl<sub>3</sub>-type structure also are formed when dehydrating the monohydrates LnCl<sub>3</sub> ·H<sub>2</sub>O (*Ln*=Ho–Lu). The reaction of Ln-formates with HCl yields products with undistorted structures.

In Table 2 temperatures of fusion  $T_{\rm m}$ , measured in our group for the anhydrous trichlorides are compiled together with some other thermodynamic data.

A difficulty in measuring  $T_{\rm m}$  arises from the effect that melts of trichlorides of the smaller lanthanides react with SiO<sub>2</sub>. (With scandium, Polyachenok *et al.* [40]

found that ScCl<sub>3</sub> melts react with SiO<sub>2</sub> forming  $Sc_2Si_2O_7$ .) We have found for  $ErCl_3$  a  $T_m=751^{\circ}C$  when melting the compound for the first time in a quartz crucible. When repeating the melting process the DTA effect splits. The splitting becomes more pronounced with further melting cycles. In the third cycle we found two effects of the same magnitude at 743 and 770°C. This is in agreement with the findings of Gaune-Escard [41] (752 and 773°C). For getting accurate  $T_{\rm m}$  values in DTA corundum or platinum crucibles are to be used for the trichlorides or LnCl3-rich samples. As the second column in Table 2 demonstrates  $T_{\rm m}$  values from the literature are in general too high. (Here the highest values from compilations of Goryushkin [42] and Kahwa [43] are not considered.) In the other columns lattice energies U and solution enthalpies are compiled. The lattice enthalpies are taken from the paper of Goryuskin [42]. A compilation of the most recent values of formation enthalpies was given by Cordfunke [44].

One may have the impression that the melting points are directly proportional to 1/U caused by the decreasing ionic radii of the Ln<sup>3+</sup> ions with increasing atomic number. However, in the group of Ln=La-Gd the temperatures of fusion decrease with decreasing radii! The reason for this contradiction is that fusion is not only determined by the solid-state but also by the properties of the liquid. However, melts of LnCl<sub>3</sub> near the temperature of fusion do not consist of the ions  $Ln^{3+}$  and  $Cl^{-}$ , but contain polymeric units [45]. Up to now no effort has been made to explain this peculiarity. It may be of interest, that the volume increase on melting is 19–26% for LaCl<sub>3</sub> to GdCl<sub>3</sub> and nearly zero for DyCl<sub>3</sub> and YCl<sub>3</sub> [46]. Recently we have compiled and critically evaluated all the results from the literature, dealing with melting points of lanthanides trichlorides, showing the relationship between melting points and polymeric units appearing in the melts [47].

#### Results of the phase diagram investigations

In Table 3 the characteristic data for all known ternary chlorides with *Ln*=Tb–Lu, Y are compiled. They are taken from our own publications on the phase dia-

|                   | 1 1                                                       | , 5,                                                 |                                                                            |                                                                         |                                               |
|-------------------|-----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|
| Compound          | Fusion temperature,<br>$T_{\rm f}^{ m o} { m C} ({ m K})$ | <i>T</i> <sub>f</sub> -ranges from the literature/°C | Lattice enthalpies,<br>$\Delta H_{\rm lat}^0/{\rm kJ}~{\rm mol}^{-1}$ [42] | Solution enthalpies,<br>$\Delta H_{sol}^{0}$ /kJ mol <sup>-1</sup> [34] | $\Delta H_{\rm sol}^0/\rm kJ\ mol^{-1}\ [88]$ |
| TbCl <sub>3</sub> | 575 (848)                                                 | 578–587                                              | -4476±12                                                                   | -188.8 (4)                                                              | -186.9 to -191.8                              |
| DyCl <sub>3</sub> | 646 (919)                                                 | 636–655                                              | -4483±32                                                                   | -197.1 (3)                                                              | -197.9 to 209.0                               |
| HoCl <sub>3</sub> | 700 (973)                                                 | 704-720                                              | -4528±12                                                                   | -209.4 (9)                                                              | -209.2 to -213.4                              |
| YCl <sub>3</sub>  | 692 (965)                                                 | 700-714                                              | -                                                                          | -212.8 (1)                                                              | -189.9 to -224.7                              |
| ErCl <sub>3</sub> | 751 (1024)                                                | 764–773                                              | -4542±12                                                                   | -211.9(1)                                                               | -207.3 to -215.0                              |
| TmCl <sub>3</sub> | 821 (1094)                                                | 819                                                  | -4581±13                                                                   | -212.2 (7)                                                              | -213.0 to -215.9                              |
| YbCl <sub>3</sub> | 860 (1133)                                                | 854-865                                              | $-4608 \pm 42$                                                             | -212.9 (7)                                                              | -212.9 to -216.1                              |
| LuCl <sub>3</sub> | 892 (1165)                                                | 892                                                  | $-4569 \pm 40$                                                             | -211.6                                                                  | -211.6 to -218.1                              |

Table 2 Thermal properties of the trichlorides, LnCl<sub>3</sub>, with Ln=Tb-Lu and Y

J. Therm. Anal. Cal., 83, 2006

## SEIFERT

| Compound                                                                                                                                                       | I. Highest temperature of existence/K | II. Solid-state reactions/K      | III. Literature                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|-----------------------------------------------------------------------------------|
| $Cs_3TbCl_6$                                                                                                                                                   | 1153 M                                | 673 T                            | Seifert, 1995 [2]                                                                 |
| $Cs_2TbCl_5$                                                                                                                                                   | 873 P                                 | 928 T                            | Seifert, 1995 [2]                                                                 |
| $CsTb_2Cl_7$                                                                                                                                                   | 945 M                                 | 688 T                            | Seifert, 1995 [2]                                                                 |
| Rb <sub>3</sub> TbCl <sub>6</sub>                                                                                                                              | 1115 M                                | 681 T                            | Seifert, 1995 [2]                                                                 |
| RbTb <sub>2</sub> Cl <sub>7</sub>                                                                                                                              | 883 M                                 | 836 T                            | Seifert, 1995 [2]                                                                 |
| $K_3$ TbCl <sub>6</sub>                                                                                                                                        | 1049 M                                | 640 T<br>394 F                   | Korshunov, 1966 [49]                                                              |
| K <sub>2</sub> TbCl <sub>5</sub>                                                                                                                               | 770 P                                 | 5771                             | Korshunov, 1966 [49]                                                              |
| KTb <sub>2</sub> Cl <sub>7</sub>                                                                                                                               | 842 M                                 |                                  | Korshunov, 1966 [49]                                                              |
| Na <sub>3</sub> TbCl <sub>6</sub>                                                                                                                              | 791 P                                 | 426 T                            | Korshunov, 1966 [49]                                                              |
| Na <sub>2</sub> TbCl <sub>5</sub>                                                                                                                              | 618 D                                 |                                  | Seifert, 1995 [10]                                                                |
| NaTbCl <sub>4</sub>                                                                                                                                            | 692 P                                 |                                  | Seifert, 1995 [10]                                                                |
| NaTb <sub>2</sub> Cl <sub>7</sub>                                                                                                                              | 729 P                                 |                                  | Korshunov, 1966 [49]                                                              |
| Cs <sub>3</sub> DyCl <sub>6</sub>                                                                                                                              | 1148 M                                | 669 T                            | Blachnik, 1979 [24]                                                               |
| Cs <sub>2</sub> DyCl <sub>5</sub>                                                                                                                              | 903 P                                 |                                  | Blachnik, 1979 [24]                                                               |
| $CsDy_2Cl_7$                                                                                                                                                   | 921 M                                 | 686 T<br>641 T                   | Blachnik, 1979 [24]                                                               |
| Rb <sub>3</sub> DyCl <sub>6</sub>                                                                                                                              | 1121 M                                | 688 T                            | Seifert, 1994 [3]                                                                 |
| RbDy <sub>2</sub> Cl <sub>7</sub>                                                                                                                              | 888 M                                 | 619 T                            | Seifert, 1994 [3]                                                                 |
| K3DyCl6                                                                                                                                                        | 1073 M                                | 646 T                            | Korshunov, 1965 [21]                                                              |
| K2DyCl5                                                                                                                                                        | 728 P                                 |                                  | Seifert, 1994 [3]                                                                 |
| KDy2Cl7                                                                                                                                                        | 841 M                                 |                                  | Blachnik, 1979 [24]                                                               |
| Na <sub>3</sub> DyCl <sub>6</sub>                                                                                                                              | 808 P                                 | 393 T                            | Korshunov, 1965 [21]                                                              |
| NaDyCl <sub>4</sub>                                                                                                                                            | 696 P                                 |                                  | Seifert, 1995 [10]                                                                |
| NaDy <sub>2</sub> Cl <sub>7</sub>                                                                                                                              | 733 P                                 |                                  | Seifert, 1995 [10]                                                                |
| Cs <sub>3</sub> HoCl <sub>6</sub><br>Cs <sub>2</sub> HoCl <sub>5</sub><br>Cs <sub>3</sub> Ho <sub>2</sub> Cl <sub>9</sub><br>CsHo <sub>2</sub> Cl <sub>7</sub> | 1150 M<br>915 P<br>842 P<br>913 M     | 676 T<br>703 T                   | Seifert, 1997 [4]<br>Seifert, 1997 [4]<br>Seifert, 1997 [4]<br>Seifert, 1997 [4]  |
| Rb <sub>3</sub> HoCl <sub>6</sub><br>Rb <sub>2</sub> HoCl <sub>5</sub><br>RbHo <sub>2</sub> Cl <sub>7</sub>                                                    | 1147 M<br>785 P<br>886 M              | 585 T<br>693 T<br>687 F<br>833 T | Seifert, 1997 [4]<br>Seifert, 1997 [4]<br>Seifert, 1997 [4]<br>Seifert, 1997 [4]  |
| $K_3HoCl_6$                                                                                                                                                    | 1077 M                                | 649 T                            | Korshunov, 1966 [50]                                                              |
| $K_2HoCl_5$                                                                                                                                                    | 688 D                                 |                                  | Seifert, 1997 [4]                                                                 |
| $KHo_2Cl_7$                                                                                                                                                    | 841 M                                 |                                  | Korshunov, 1966 [50]                                                              |
| Na3HoCl <sub>6</sub>                                                                                                                                           | 823 P                                 | 647 T                            | Korshunov, 1965 [51]                                                              |
| NaHoCl4                                                                                                                                                        | 694 P                                 |                                  | Seifert, 1997 [11]                                                                |
| NaHo2Cl7                                                                                                                                                       | 710 P                                 |                                  | Seifert, 1997 [11]                                                                |
| Cs <sub>3</sub> YCl <sub>6</sub><br>Cs <sub>2</sub> YCl <sub>5</sub><br>Cs <sub>3</sub> Y <sub>2</sub> Cl <sub>9</sub><br>CsY <sub>2</sub> Cl <sub>7</sub>     | 1166 M<br>904 P<br>808 D<br>917 M     | 671 T<br>690 T                   | Korshunov, 1965 [17]<br>Seifert, 1998 [5]<br>Seifert, 1998 [5]<br>Qiao, 1992 [27] |
|                                                                                                                                                                | 11/2 \/                               | 618 T<br>690 T                   | M 10(0 [1/]                                                                       |
| Rb <sub>3</sub> YCl <sub>6</sub>                                                                                                                               | 1142 M                                | 827 T                            | Morozov, 1969 [16]                                                                |
| RbY <sub>2</sub> Cl <sub>7</sub>                                                                                                                               | 876 M                                 |                                  | Qiao, 1992 [27]                                                                   |
| K <sub>3</sub> YCl <sub>6</sub>                                                                                                                                | 1083 M                                | 650 T                            | Morozov, 1964 [52]<br>Korshunov, 1964 [53]                                        |
| K <sub>2</sub> YCl <sub>5</sub><br>KY <sub>2</sub> Cl <sub>7</sub>                                                                                             | 685 D<br>837 M                        | 819 T                            | Seifert, 1998 [5]                                                                 |
| Na <sub>3</sub> YCl <sub>6</sub><br>NaYCl <sub>4</sub>                                                                                                         | 821 P<br>704 M                        | 668 T                            | Morozov, 1964, [52]<br>Korshunov, 1964 [53]<br>Seifert, 1998 [5]                  |

Table 3 Characteristic data for ternary chlorides in the systems  $ACl/LnCl_3$ 

| Compound                                         | I. Highest temperature of existence/K | II. Solid-state reactions/K | III. Literature          |
|--------------------------------------------------|---------------------------------------|-----------------------------|--------------------------|
| Cs <sub>3</sub> ErCl <sub>6</sub>                | 1163 M                                | 665 T                       | Blachnik, 1979 [24]      |
| $Cs_2ErCl_5$                                     | 923 P                                 |                             | Blachnik, 1979 [24]      |
| $Cs_3Er_2Cl_9$                                   | 874 P                                 |                             | Blachnik, 1979 [24]      |
| $CsEr_2Cl_7$                                     | 915 M                                 | 708 T                       | Blachnik, 1979 [24]      |
| 03212017                                         |                                       | 511 T                       |                          |
| Rb <sub>3</sub> ErCl <sub>6</sub>                | 1140 M                                | 696 T                       | Seifert, 1995 [6]        |
| Rb <sub>2</sub> ErCl <sub>5</sub>                | 793 P                                 | 621 F                       | Seifert, 1995 [6]        |
| RbEr <sub>2</sub> Cl <sub>7</sub>                | 861 M                                 | 823 T                       | Seifert, 1995 [6]        |
| K <sub>3</sub> ErCl <sub>6</sub>                 | 1083 M                                | 648 T                       | Korshunov, 1966 [50]     |
| 1321010                                          |                                       | 321 T                       | Korshullov, 1900 [90]    |
| KEr <sub>2</sub> Cl <sub>7</sub>                 | 811 P                                 |                             | Seifert, 2001 [7]        |
| Na <sub>3</sub> ErCl <sub>6</sub>                | 835 M                                 |                             | Korshunov, 1965 [51]     |
| NaErCl <sub>4</sub>                              | 707 P                                 |                             | Seifert, 1997 [11]       |
| Cs <sub>3</sub> TmCl <sub>6</sub>                | 1168 M                                | (0 <b>0 T</b>               | Seifert, 1998 [8]        |
| 5531111016                                       |                                       | 682 T                       | Sener, 1990 [0]          |
| Ca TmCl                                          | 913 P                                 | 649 T                       | Saifart 1009 [9]         |
| $Cs_2TmCl_5$                                     | 890 P                                 |                             | Seifert, 1998 [8]        |
| $Cs_3Tm_2Cl_9$                                   |                                       | 705 T                       | Seifert, 1998 [8]        |
| CsTm <sub>2</sub> Cl <sub>7</sub>                | 881 M                                 | 445 T                       | Seifert, 1998 [8]        |
| Dh TmCl                                          | 1153 M                                | 695 T                       | Q_::C                    |
| $Rb_3TmCl_6$                                     | 808 P                                 | 095 1                       | Seifert, 1998 [8]        |
| Rb <sub>2</sub> TmCl <sub>5</sub>                |                                       | 909 T                       | Seifert, 1998 [8]        |
| RbTm <sub>2</sub> Cl <sub>7</sub>                | 835 M                                 | 808 T                       | Seifert, 1998 [8]        |
| K <sub>3</sub> TmCl <sub>6</sub>                 | 1086 M                                | 659 T                       | Seifert, 1998 [8]        |
| K <sub>2</sub> TmCl <sub>5</sub>                 | 718 P                                 |                             | Seifert, 1998 [8]        |
| $KTm_2Cl_7$                                      | 774 P                                 |                             | Seifert, 1998 [8]        |
| Na <sub>3</sub> TmCl <sub>6</sub>                | 843 M                                 |                             | Seifert, 1999 [12]       |
| NaTmCl <sub>4</sub>                              | 673 D                                 |                             | Seifert, 1999 [12]       |
| Cs <sub>3</sub> YbCl <sub>6</sub>                | 1171 M                                | 683 T<br>640 T              | Blachnik, 1979 [24]      |
| Cs <sub>2</sub> YbCl <sub>5</sub>                | 923 P                                 | 040 1                       | Blachnik, 1979 [24]      |
| $Cs_3Yb_2Cl_9$                                   | 909 P                                 |                             | Blachnik, 1979 [24]      |
| CsYb <sub>2</sub> Cl <sub>7</sub>                | 840 P                                 | 709 T                       | Blachnik, 1979 [24]      |
| Rb <sub>3</sub> YbCl <sub>6</sub>                | 1143 M                                | 698 T                       | Seifert, 1998 [9]        |
| Rb <sub>2</sub> YbCl <sub>5</sub>                | 817 P                                 | 0,01                        | Seifert, 1998 [9]        |
| $Rb_2 rbCl_3$<br>$RbYb_2Cl_7$                    | 786 P                                 |                             | Seifert, 1998 [9]        |
| K <sub>3</sub> YbCl <sub>6</sub>                 | 1093 M                                | 665 T                       |                          |
| • •                                              |                                       | 000 1                       | Novikov, 1964 [54]       |
| $X_2$ YbCl <sub>5</sub>                          | 728 P<br>608 P                        | 667 F                       | Seifert, 1998 [9]        |
| $X_3Yb_2Cl_9$                                    | 698 P<br>726 P                        | 00 / F                      | Seifert, 1998 [9]        |
| CYb <sub>2</sub> Cl <sub>7</sub>                 | 726 P                                 |                             | Seifert, 1998 [9]        |
| Na <sub>3</sub> YbCl <sub>6</sub>                | 845 M                                 |                             | Korshunov, 1968 [18]     |
| NaYbCl <sub>4</sub>                              | 725 P                                 |                             | Seifert, 1999 [12]       |
| CsCl/LuCl <sub>3</sub><br>RbCl/LuCl <sub>3</sub> | not investigated                      | d                           | Gmelin Handb., 1977 [19] |
| K <sub>3</sub> LuCl <sub>6</sub>                 | 1089 M                                | 647 T                       | Korshunov, 1968 [18]     |
| Na <sub>3</sub> LuCl <sub>6</sub>                | 853 M                                 |                             | Korshunov, 1968 [18]     |
| NaLuCl <sub>4</sub>                              | 745 P                                 |                             | Seifert, 1999 [12]       |

 Table 3 Continued

M – melting-temperatures for congruently melting compounds; P – peritectic-temperatures for incongruently melting compounds; D – decomposition-temperatures for compounds, that are stable at low temperature and decompose in the solid-state when heated;

T – phase transitions between polymorphic modifications; F – formation temperatures for compounds stable at temperatures  $\geq T_{T}$ .

grams  $ACl/LnCl_3$  with A=Cs, Rb, K, Na. Phase diagrams are given in Figs 1–4. Ternary chlorides prepared from solutions are described in 'Ternary chlorides from aqueous solutions'. In column I of Table 3 the highest temperatures of existence for each solid compound taken from DTA heating curves are given: melting temperatures (M) for congruently melting compounds (all compounds

A<sub>3</sub>LnCl<sub>6</sub> with A=Cs, Rb, K); peritectic temperatures (P) for incongruently melting compounds (most compounds A<sub>2</sub>LnCl<sub>5</sub> and A<sub>3</sub>Ln<sub>2</sub>Cl<sub>9</sub>); decomposition temperatures (D) for compounds, that are stable at low temperature and decompose in the solid-state when heated (examples are the compounds Cs<sub>3</sub>Y<sub>2</sub>Cl<sub>9</sub> in Fig. 1, K<sub>2</sub>HoCl<sub>5</sub> in Fig. 3 and K<sub>2</sub>YCl<sub>5</sub>). Temperatures for other solid-state reactions are given in column II: phase transitions between polymorphic modifications (T) or formation temperatures (F) for compounds stable at temperatures  $\geq T_{T}$ . (These are the Rb compounds Rb<sub>2</sub>HoCl<sub>5</sub>, Rb<sub>2</sub>YCl<sub>5</sub>, Rb<sub>2</sub>ErCl<sub>5</sub> (Fig. 2), K<sub>3</sub>Yb<sub>2</sub>Cl<sub>9</sub> and several compounds K<sub>3</sub>LnCl<sub>6</sub>, described in [7]).

Solid-state reactions are a special kind of reconstructive phase transitions. These are transitions in which the arrangement of the ions is drastically changed. Ions have to move from one site to another passing strong potential walls of other ions. The resulting 'kinetic hindrance' can cause great differences between reaction temperatures, measured in DTA heating and cooling curves (thermal hysteresis). In extreme cases in cooling experiments the 'undercooling' can become so strong that the reaction does not occur in the time-scale of DTA and must be forced by sufficiently long annealing. We have discussed the issue of these 'retarded reactions' in several papers, the last in [48].

The true equilibrium temperatures can be detected by measurement of  $\Delta G vs. T$  curves in galvanic cells for solid electrolytes. Such measurements are described in 'Gibbs free energies from *e.m.f.* measurements', results are represented in the second column of Table 3. These temperatures are in general lower than the temperatures recorded in DTA heating curves and higher than those recorded in cooling curves.

Column III of Table 3 contains literature references from the research groups who were first to published correct data about the appropriate compound, not regarding data for polymorphic phase transitions.

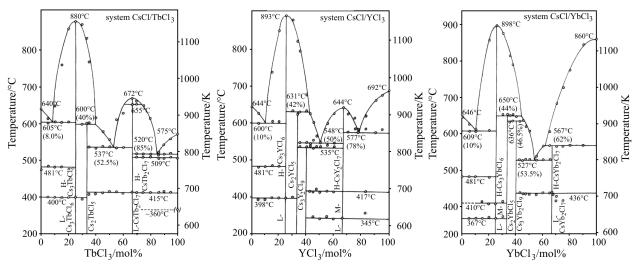



Fig. 1 Phase diagrams of CsCl with TbCl<sub>3</sub>, YCl<sub>3</sub> and YbCl<sub>3</sub>

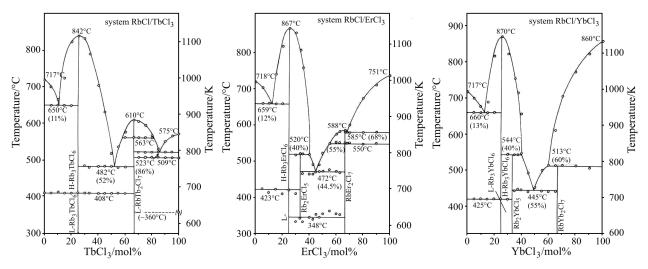



Fig. 2 Phase diagrams of RbCl with TbCl<sub>3</sub>, ErCl<sub>3</sub> and YbCl<sub>3</sub>

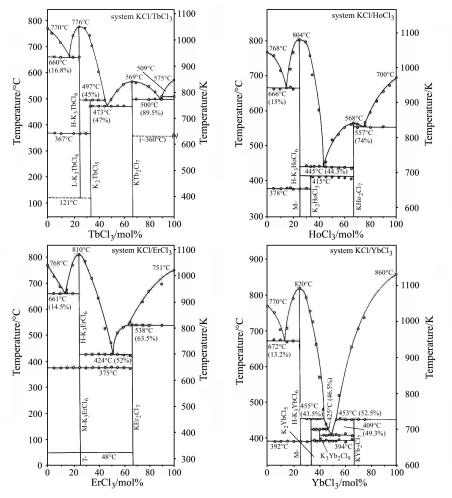



Fig. 3 Phase diagrams of KCl with TbCl<sub>3</sub>, HoCl<sub>3</sub>, ErCl<sub>3</sub> and YbCl<sub>3</sub>

#### Ternary chlorides from aqueous solutions

Hydrates of ternary chlorides belonging to the erythrosiderite family ( $K_2FeCl_5 \cdot H_2O$ -type; Pnma) are known with trivalent transition metal cations [55] and as Cs-compounds,  $Cs_2LnCl_5 \cdot H_2O$  with Ln=Tm [8], Yb [9], Y, Er [5] and Lu [56]. In more extensive investigations Reuter and Frenzen found the following hydrates CsLaCl<sub>4</sub>·3H<sub>2</sub>O and ALnCl<sub>4</sub>·4H<sub>2</sub>O ( $A=NH_4$ , K, Rb, Cs; Ln=La=Sm) [57], Rb<sub>3</sub>LnCl<sub>6</sub>·2H<sub>2</sub>O (Ln=La=Nd) [58] and Cs<sub>2</sub>LnCl<sub>5</sub>·6H<sub>2</sub>O (Ln=Sm=Ho [4]).

For all groups the crystal structures were determined with single crystals. However, the most important results were that in the systems CsCl/LnCl<sub>3</sub>/H<sub>2</sub>O two groups of anhydrous compounds were precipitated by saturating nearly concentrated solutions of CsCl and LnCl<sub>3</sub>·*x*H<sub>2</sub>O with HCl. With a molar ratio Cs/Ln 3:1, hexachloro compounds precipitate with a previously unknown structure (S. G. Pbcm; *Ln*=Nd–Lu) [15]; if the ratio is 4:1 compounds with the composition Cs<sub>4</sub>LnCl<sub>7</sub> are obtained with *Ln*=Ho–Lu [14]. (For *Ln*=La–Pr trihydrates, Cs<sub>3</sub>LnCl<sub>3</sub>·3H<sub>2</sub>O, are obtained independent of the molar ratio [13].) The Pbcm-modification of  $Cs_3LnCl_3$  is stable at ambient temperature, as proved by solution calorimetry ('Solution enthalpies' and Table 5). The transformation to the 'L-modification' is kinetically so strongly hindered, that it takes place only after long annealing (10 h) at 300°C. In a DTA heating curve only the transformation to the cubic H-modification at ~400°C can be detected. The compounds  $Cs_4LnCl_7$ decompose to  $Cs_3LnCl_6+CsCl$  when heated to 250°C.

### The crystal structures

In 1980 the first structures of ternary chlorides of trivalent rare earth elements, namely those of  $Cs_2DyCl_5$ [59] and  $Cs_3Sc_2Cl_9$  [60] were determined by G. Meyer with single crystal techniques. Two years later he collected all known data on halides of RE-elements including his own unpublished results and presented them in a review article [56], which was continued in 1991 [61]. Earlier, only tables with peak positions of debyeograms for some compounds were published [62]. After determining the structure of one member of

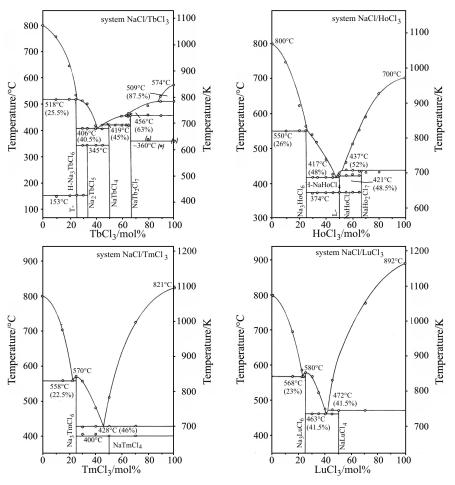



Fig. 4 Phase diagrams of NaCl with TbCl<sub>3</sub>, HoCl<sub>3</sub>, TmCl<sub>3</sub> and LuCl<sub>3</sub>

a family, e.g.  $Cs_2DyCl_5$ , with single crystals, he prepared other compounds with the same stoichiometry, but with different  $A^+$  and  $Ln^{3+}$  ions. We completed this project, finding such compounds systematically by elucidating phase diagrams with DTA.

In Table 4 unit cell parameters and molar volumes  $V_{\rm m(exp)}$  (in cm<sup>3</sup> mol<sup>-1</sup>) of all actually known compounds are compiled. Literature references are given to the compounds, which were first investigated by Meyer. Our results are taken from references [1-15]. In the last column of the table  $\Delta V_{\rm m}$  values are given. They are the differences between  $V_{m(exp)}$  and the sum of molar volume  $pV_{\rm m}(\rm ACl)+qV_{\rm m}(\rm LnCl_3)$  for compounds of the type  $A_pLn_qCl_{(p+q)}$ . A positive value stands for a volume increase by formation from the binary parent compounds. The  $V_{\rm m}(\rm ACl)$  values used are:  $V_{\rm m}(\rm CsCl, \rm NaCl-type)=$  $V_{\rm m}$ (RbCl)=42.3;  $V_{\rm m}$ (KCl)=37.3;  $V_{\rm m}$ (NaCl)= 52.4;  $27.0 \text{ cm}^3 \text{ mol}^{-1}$ . The analogous values for the lanthanide trichlorides were calculated from their most reliable lattice parameters and they are L-TbCl<sub>3</sub>=57.6; L-DyCl<sub>3</sub>= 57.8; HoCl<sub>3</sub>=73.0; ErCl<sub>3</sub>=72.1; TmCl<sub>3</sub>=71.4; YbCl<sub>3</sub>= 70.5; LuCl<sub>3</sub>=70.3; YCl<sub>3</sub>=74.8 cm<sup>3</sup> mol<sup>-1</sup> (HoCl<sub>3</sub> to LuCl<sub>3</sub>: YCl<sub>3</sub>-type [36]).

#### Compounds A<sub>3</sub>LnCl<sub>6</sub>

All compounds A<sub>3</sub>LnCl<sub>6</sub> are genuine solid complexes. Negatively charged [LnCl<sub>6</sub>]<sup>3-</sup> octahedra are held together by A<sup>+</sup> cations. According to our own investigations with high-temperature Guinier-patterns of crystal powders, all A<sub>3</sub>LnCl<sub>6</sub> with the larger alkali-metal cations A=K, Rb, Cs crystallize at temperatures higher than ~400°C in a cubic pseudo elpasolite-structure. The chloride ions together with 2/3 of the alkali-metal cations form a cubic-close packed structure in which all octahedral holes, formed by Cl<sup>-</sup> ions only, are occupied by 1/3 of the A<sup>+</sup> and the Ln<sup>3+</sup> ions. The general formula can be written as A<sub>2</sub>A'LnCl<sub>6</sub>. The coordination number (CN) of A is 12 and that of A' is 6. The elpasolite-type is related to the (halogeno) perovskite-structure in the following manner, in two  $[ABX_3]$  units the two  $B^{2+}$  are substituted by  $A^+$  plus  $Ln^{3+}$ .

In addition to these high-temperature modifications all hexachloro compounds with Cs and Rb form low-temperature modifications with the monoclinic Cs<sub>3</sub>BiCl<sub>6</sub>-type structure (S.G. C2/c) [63], while the analogous potassium compounds beginning with Ln=Pr, have the near related monoclinic K<sub>3</sub>MoCl<sub>6</sub>-type structure, S.G. P2<sub>1</sub>/c [64]. Furthermore, with A=Cs **Table 4** Unit cell parameters and molar volumes  $V_{m(exp.)}$  (in cm<sup>3</sup> mol<sup>-1</sup>) of ternary lanthanide chlorides

| Compound                                                                                                                                                    | a/Å                                                                          | V <sub>m(exp.)</sub>                                                 | $\Delta V_{\mathrm{m}}$                                        |                                                                                                                                                       | a/Å                                                                | V <sub>m(exp.)</sub>                                        | $\Delta V_{\rm m}$                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|
| $\begin{array}{c} Cs_3 TbCl_6\\ Cs_3 DyCl_6\\ Cs_3 HoCl_6\\ Cs_3 ErCl_6\\ Cs_3 TmCl_6\\ Cs_3 TmCl_6\\ Cs_3 YbCl_6\\ Cs_3 LuCl_6\\ Cs_3 YCl_6\\ \end{array}$ | 11.597<br>11.553<br>11.522<br>11.535<br>11.560<br>11.522<br>11.478<br>11.582 | 234.8<br>232.1<br>230.3<br>231.1<br>232.6<br>230.3<br>227.7<br>233.9 | +20.0<br>+17.1<br>+0.1<br>+3.8<br>+4.0<br>+2.6<br>+0.2<br>+1.9 | $\begin{array}{l} Rb_3TbCl_6\\ Rb_3DyCl_6\\ Rb_3HoCl_6\\ Rb_3ErCl_6\\ Rb_3TmCl_6\\ Rb_3TmCl_6\\ Rb_3YbCl_6\\ Rb_3YCl_6 \left[ 65 \right] \end{array}$ | 11.257<br>11.271<br>11.214<br>11.191<br>11.103<br>11.145<br>11.133 | 214.8<br>215.6<br>212.3<br>211.0<br>206.1<br>208.4<br>207.8 | +30.3<br>+30.9<br>+12.4<br>+12.0<br>+7.8<br>+11.0<br>+6.1 |
| K <sub>3</sub> TbCl <sub>6</sub><br>K <sub>3</sub> DyCl <sub>6</sub><br>K <sub>3</sub> HoCl <sub>6</sub><br>K <sub>3</sub> ErCl <sub>6</sub>                | 11.018<br>10.944<br>10.952<br>10.918                                         | 201.4<br>197.3<br>197.8<br>195.9                                     | +31.9<br>+27.6<br>+12.9<br>+11.9                               | $\begin{array}{l} K_2 TmCl_6\\ K_3 YbCl_6\\ K_3 LuCl_6\\ K_3 YCl_6 \left[65\right] \end{array}$                                                       | 10.901<br>10.864<br>10.857<br>10.887                               | 195.0<br>193.0<br>192.7<br>194.3                            | +11.7<br>+10.6<br>+10.1<br>+7.6                           |

Table 4a High-temperature modification of compounds A<sub>3</sub>LnCl<sub>6</sub> (Fm3m; Z=4)

Table 4b Low-temperature modification of compounds A3LnCl6 (C2/c; Z=8; Cs3BiCl6-type)

| Compound                              | a/Å                   | b/Å   | $c/{ m \AA}$ | β/degree | V <sub>m(exp.)</sub> | $\Delta V_{ m m}$ |
|---------------------------------------|-----------------------|-------|--------------|----------|----------------------|-------------------|
| Cs <sub>3</sub> TbCl <sub>6</sub>     | 26.990                | 8.180 | 13.171       | 99.97    | 215.8                | +1.0              |
| Cs <sub>3</sub> DyCl <sub>6</sub>     | 26.946                | 8.154 | 13.137       | 100.15   | 213.9                | -1.1              |
| Cs <sub>3</sub> HoCl <sub>6</sub>     | 26.927                | 8.131 | 13.139       | 100.23   | 213.1                | -17.1             |
| Cs <sub>3</sub> ErCl <sub>6</sub>     | 26.907                | 8.132 | 13.077       | 99.96    | 212.2                | -17.1             |
| Cs <sub>3</sub> TmCl <sub>6</sub>     | 26.851                | 8.115 | 13.089       | 100.14   | 211.3                | -17.3             |
| Cs <sub>3</sub> YbCl <sub>6</sub>     | 26.838                | 8.174 | 13.035       | 100.22   | 211.8                | -15.9             |
| Cs <sub>3</sub> YCl <sub>6</sub> [62] | 26.908                | 8.157 | 13.126       | 100.01   | 213.6                | -18.4             |
| Compounds Rb <sub>3</sub> L           | nCl <sub>6</sub> [65] |       |              |          |                      |                   |
| Rb <sub>3</sub> TbCl <sub>6</sub>     | 25.865                | 7.911 | 12.856       | 99.55    | 195.3                | +10.8             |
| Rb <sub>3</sub> DyCl <sub>6</sub>     | 25.812                | 7.889 | 12.830       | 99.56    | 193.9                | +9.2              |
| Rb <sub>3</sub> HoCl <sub>6</sub>     | 25.772                | 7.868 | 12.802       | 99.56    | 192.7                | -7.2              |
| Rb <sub>3</sub> ErCl <sub>6</sub>     | 25.753                | 7.868 | 12.792       | 99.65    | 192.4                | -6.6              |
| Rb <sub>3</sub> TmCl <sub>6</sub>     | 25.700                | 7.867 | 12.770       | 99.62    | 191.6                | -6.7              |
| Rb <sub>3</sub> YbCl <sub>6</sub>     | 25.656                | 7.839 | 12.750       | 99.62    | 190.3                | -7.1              |
| Rb <sub>3</sub> LuCl <sub>6</sub>     | 25.630                | 7.823 | 12.740       | 99.80    | 189.5                | -7.7              |
| Rb <sub>3</sub> YCl <sub>6</sub>      | 25.804                | 7.881 | 12.830       | 99.61    | 193.7                | -8.0              |

Table 4c Compounds Cs<sub>3</sub>LnCl<sub>6</sub> from aqueous solution (Pbcm; Z=8) [15]

| Compound                          | a/Å   | b/Å    | $c/{ m \AA}$ | V <sub>m(exp.)</sub> | $\Delta V_{ m m}$ |
|-----------------------------------|-------|--------|--------------|----------------------|-------------------|
| Cs <sub>3</sub> NdCl <sub>6</sub> | 8.247 | 13.242 | 26.686       | 219.3                | +1.6              |
| Cs <sub>3</sub> SmCl <sub>6</sub> | 8.224 | 13.175 | 26.609       | 217.0                | +0.6              |
| Cs <sub>3</sub> EuCl <sub>6</sub> | 8.204 | 13.153 | 26.580       | 215.9                | +0.1              |
| Cs <sub>3</sub> GdCl <sub>6</sub> | 8.185 | 13.142 | 26.557       | 215.0                | -0.3              |
| Cs <sub>3</sub> TbCl <sub>6</sub> | 8.160 | 13.114 | 26.522       | 213.6                | -1.2              |
| Cs <sub>3</sub> DyCl <sub>6</sub> | 8.155 | 13.082 | 26.481       | 212.7                | -2.3              |
| Cs <sub>3</sub> HoCl <sub>6</sub> | 8.158 | 13.066 | 26.457       | 212.3                | -17.9             |
| Cs <sub>3</sub> ErCl <sub>6</sub> | 8.146 | 13.074 | 26.442       | 211.9                | -17.4             |
| Cs <sub>3</sub> TmCl <sub>6</sub> | 8.115 | 13.043 | 26.366       | 210.1                | -18.5             |
| Cs <sub>3</sub> YbCl <sub>6</sub> | 8.089 | 13.077 | 26.366       | 209.9                | -17.8             |
| Cs <sub>3</sub> YCl <sub>6</sub>  | 8.144 | 13.084 | 26.479       | 212.4                | -19.6             |

#### SEIFERT

## Table 4 Continued

Table 4d Low-temperature modification of compounds K<sub>3</sub>LnCl<sub>6</sub> (P2<sub>1</sub>/c; Z=4; K<sub>3</sub>MoCl<sub>6</sub>-type) [7]

| Compound                         | a/Å    | $b/{ m \AA}$ | $c/{ m \AA}$ | β/degree | V <sub>m(exp.)</sub> | $\Delta V_{ m m}$ |
|----------------------------------|--------|--------------|--------------|----------|----------------------|-------------------|
| K <sub>3</sub> TbCl <sub>6</sub> | 13.00  | 7.61         | 13.02        | 109.2    | 183.0                | +13.5             |
| K <sub>3</sub> DyCl <sub>6</sub> | 12.985 | 7.559        | 12.882       | 108.86   | 180.1                | +10.4             |
| K <sub>3</sub> HoCl <sub>6</sub> | 13.084 | 7.721        | 12.636       | 110.02   | 180.6                | -4.3              |
| K <sub>3</sub> ErCl <sub>6</sub> | 13.098 | 7.671        | 12.526       | 109.94   | 178.1                | -5.9              |
| K <sub>3</sub> TmCl <sub>6</sub> | 13.076 | 7.715        | 12.567       | 109.96   | 178.8                | -4.5              |
| K <sub>3</sub> YbCl <sub>6</sub> | 12.998 | 7.642        | 12.485       | 109.85   | 175.6                | -6.8              |
| K <sub>3</sub> LuCl <sub>6</sub> | 13.010 | 7.699        | 12.485       | 109.82   | 176.4                | -6.2              |
| K <sub>3</sub> YCl <sub>6</sub>  | 13.093 | 7.735        | 12.585       | 110.13   | 180.2                | -6.5              |

**Table 4e** Compounds Na<sub>3</sub>LnCl<sub>6</sub> with the cryolite-structure (P2<sub>1</sub>/n; Z=2) [73]

| Compound                                 | a/Å   | b/Å   | $c/{ m \AA}$ | β/degree | V <sub>m(exp.)</sub> | $\Delta V_{ m m}$ |
|------------------------------------------|-------|-------|--------------|----------|----------------------|-------------------|
| H-Na <sub>3</sub> TbCl <sub>6</sub> [10] | 6.891 | 7.276 | 10.193       | 90.2     | 155.9                | +17.3             |
| H-Na <sub>3</sub> DyCl <sub>6</sub>      | 6.883 | 7.285 | 10.182       | 90.8     | 153.7                | +14.9             |
| Na <sub>3</sub> HoCl <sub>6</sub> [74]   | 6.868 | 7.274 | 10.167       | 90.8     | 152.9                | -1.1              |
| Na <sub>3</sub> ErCl <sub>6</sub>        | 6.844 | 7.257 | 10.125       | 90.8     | 151.4                | -1.7              |
| Na <sub>3</sub> TmCl <sub>6</sub>        | 6.834 | 7.239 | 10.106       | 90.8     | 150.5                | -1.9              |
| Na <sub>3</sub> YbCl <sub>6</sub>        | 6.822 | 7.229 | 10.088       | 90.7     | 149.8                | -1.7              |
| Na <sub>3</sub> LuCl <sub>6</sub> [75]   | 6.805 | 7.218 | 10.068       | 90.7     | 148.9                | -2.4              |
| Na <sub>3</sub> YCl <sub>6</sub> [75]    | 6.869 | 7.275 | 10.164       | 90.8     | 152.9                | -2.9              |

Table 4f Low-temperature modification of Na<sub>3</sub>LnCl<sub>6</sub> (*Ln*=Tb, Dy, Y) (R3; Z=3) [66]

| Compound                                             | a/Å   | $c/{ m \AA}$ | V <sub>m(exp.)</sub> | $\Delta V_{ m m}$ |
|------------------------------------------------------|-------|--------------|----------------------|-------------------|
| L-Na <sub>3</sub> TbCl <sub>6</sub> [73]             | 7.000 | 18.758       | 159.8                | +21.2             |
| L-Na <sub>3</sub> DyCl <sub>6</sub> [10]             | 6.974 | 18.687       | 158.0                | +19.2             |
| L-Na <sub>3</sub> YCl <sub>6</sub> <sup>*</sup> [76] | 6.973 | 18.684       | 157.9                | +2.1              |

\* – <243 K

Table 4g Compounds A2LnCl5 with the Cs2DyCl5-structure (Pbnm; Z=4) [68]

| Compound                              | a/Å    | b/Å   | $c/{ m \AA}$ | $V_{\rm m(exp.)}$ | $\Delta V_{ m m}$ |
|---------------------------------------|--------|-------|--------------|-------------------|-------------------|
| Cs <sub>2</sub> TbCl <sub>5</sub> [2] | 15.258 | 9.569 | 7.509        | 165.1             | +2.7              |
| Cs <sub>2</sub> DyCl <sub>5</sub>     | 15.233 | 9.549 | 7.497        | 164.2             | +1.6              |
| Cs <sub>2</sub> HoCl <sub>5</sub>     | 15.202 | 9.515 | 7.454        | 162.4             | -15.4             |
| Cs <sub>2</sub> ErCl <sub>5</sub>     | 15.191 | 9.499 | 7.442        | 161.7             | -15.2             |
| Cs <sub>2</sub> TmCl <sub>5</sub>     | 15.177 | 9.481 | 7.418        | 160.7             | -15.2             |
| Cs <sub>2</sub> YbCl <sub>5</sub>     | 15.147 | 9.456 | 7.408        | 159.8             | -15.5             |
| Cs <sub>2</sub> LuCl <sub>5</sub>     | 15.142 | 9.448 | 7.385        | 159.1             | -16.0             |
| Cs <sub>2</sub> YCl <sub>5</sub>      | 15.226 | 9.533 | 7.469        | 163.2             | -16.4             |
| Rb <sub>2</sub> HoCl <sub>5</sub> [4] | 14.642 | 9.570 | 7.279        | 153.6             | -4.0              |
| Rb <sub>2</sub> ErCl <sub>5</sub>     | 14.666 | 9.513 | 7.274        | 152.8             | -3.9              |
| Rb <sub>2</sub> TmCl <sub>5</sub>     | 14.621 | 9.465 | 7.271        | 151.5             | -4.5              |
| $Rb_2YbCl_5[9]$                       | 14.942 | 9.527 | 7.261        | 155.6             | +0.5              |
| Rb <sub>2</sub> LuCl <sub>5</sub>     | 14.609 | 9.398 | 7.246        | 149.8             | -5.1              |
| Rb <sub>2</sub> YCl <sub>5</sub> [5]  | 14.638 | 9.587 | 7.341        | 155.0             | -4.4              |

## Table 4 Continued

| Compound                              | a/Å    | b/Å   | $c/{ m \AA}$ | $V_{\rm m(exp.)}$ | $\Delta V_{ m m}$ |
|---------------------------------------|--------|-------|--------------|-------------------|-------------------|
| K <sub>2</sub> TbCl <sub>5</sub> [66] | 12.627 | 8.592 | 7.925        | 129.5             | -2.7              |
| K <sub>2</sub> DyCl <sub>5</sub> [66] | 12.608 | 8.565 | 7.910        | 128.6             | -3.8              |
| K <sub>2</sub> HoCl <sub>5</sub>      | 12.642 | 8.562 | 7.928        | 129.2             | -18.4             |
| K <sub>2</sub> YCl <sub>5</sub>       | 12.646 | 8.573 | 7.928        | 129.4             | -20.0             |
| Na <sub>2</sub> TbCl <sub>5</sub>     | 12.010 | 8.274 | 7.643        | 114.3             | +2.7              |

#### Table 4h Compounds A<sub>2</sub>LnCl<sub>5</sub> with the K<sub>2</sub>PrCl<sub>5</sub>-structure (Pnma; Z=4)

## Table 4i Compounds ALn<sub>2</sub>Cl<sub>7</sub>/RbDy<sub>2</sub>Cl<sub>7</sub>-structure (Pnma; Z=4) [66]

| Compound                            | a/Å    | b/Å   | $c/{ m \AA}$ | $V_{\rm m(exp.)}$ | $\Delta V_{ m m}$ |
|-------------------------------------|--------|-------|--------------|-------------------|-------------------|
| CsTb <sub>2</sub> Cl <sub>7</sub>   | 13.291 | 7.015 | 12.747       | 178.9             | +11.3             |
| $CsDy_2Cl_7$                        | 13.322 | 6.984 | 12.685       | 177.7             | +9.7              |
| CsHo <sub>2</sub> Cl <sub>7</sub>   | 13.343 | 6.956 | 12.647       | 176.7             | -21.7             |
| CsEr <sub>2</sub> Cl <sub>7</sub>   | 13.360 | 6.928 | 12.582       | 175.3             | -21.3             |
| CsTm <sub>2</sub> Cl <sub>7</sub>   | 13.377 | 6.906 | 12.524       | 174.2             | -21.0             |
| CsYb <sub>2</sub> Cl <sub>7</sub>   | 13.402 | 6.887 | 12.479       | 173.4             | -20.0             |
| CsLu <sub>2</sub> Cl <sub>7</sub> * | 13.304 | 6.857 | 12.448       | 171.0             | (-22.0)           |
| CsY <sub>2</sub> Cl <sub>7</sub>    | 13.354 | 6.967 | 12.663       | 177.4             | -24.6             |
| RbTb <sub>2</sub> Cl <sub>7</sub>   | 12.885 | 6.940 | 12.692       | 170.9             | +13.4             |
| RbDy <sub>2</sub> Cl <sub>7</sub>   | 12.878 | 6.939 | 12.668       | 170.5             | +12.6             |
| RbHo <sub>2</sub> Cl <sub>7</sub>   | 12.869 | 6.921 | 12.636       | 169.5             | -18.8             |
| RbEr <sub>2</sub> Cl <sub>7</sub>   | 12.851 | 6.898 | 12.609       | 168.3             | -18.2             |
| RbTm <sub>2</sub> Cl <sub>7</sub>   | 12.831 | 6.872 | 12.570       | 166.9             | -18.2             |
| RbYb <sub>2</sub> Cl <sub>7</sub>   | 12.811 | 6.850 | 12.534       | 165.6             | -17.7             |
| RbY <sub>2</sub> Cl <sub>7</sub>    | 12.896 | 6.917 | 12.644       | 169.8             | -22.1             |
| M-KY <sub>2</sub> Cl <sub>7</sub>   | 13.003 | 6.929 | 12.714       | 172.5             | -14.5             |

\*at-100°C

## Table 4j Compounds KLn<sub>2</sub>Cl<sub>7</sub>/KDy<sub>2</sub>Cl<sub>7</sub>-structure (P2<sub>1</sub>/a; Z=4) [66]

| Compound                         | a/Å    | b/Å   | $c/{ m \AA}$ | β/degree | V <sub>m(exp.)</sub> | $\Delta V_{ m m}$ |
|----------------------------------|--------|-------|--------------|----------|----------------------|-------------------|
| $KTb_2Cl_7$                      | 12.770 | 6.890 | 12.649       | 89.52    | 167.6                | +15.0             |
| KDy <sub>2</sub> Cl <sub>7</sub> | 12.726 | 6.878 | 12.616       | 89.34    | 166.3                | +13.4             |
| KHo <sub>2</sub> Cl <sub>7</sub> | 12.721 | 6.867 | 12.583       | 89.19    | 165.5                | -17.8             |
| KEr <sub>2</sub> Cl <sub>7</sub> | 12.692 | 6.851 | 12.538       | 89.05    | 164.1                | -17.4             |
| KTm <sub>2</sub> Cl <sub>7</sub> | 12.660 | 6.829 | 12.493       | 88.93    | 162.6                | -17.5             |
| KYb <sub>2</sub> Cl <sub>7</sub> | 12.661 | 6.807 | 12.435       | 88.87    | 161.3                | -17.0             |
| $KY_2Cl_7$                       | 12.731 | 6.874 | 12.600       | 89.33    | 166.0                | -20.9             |

| <b>Table 4k</b> Compounds $Cs_3Ln_2Cl_9$ with the $Cs_3Tl_2Cl_9$ -structure ( $R\overline{3}c; Z=6$ ) [60] |  |
|------------------------------------------------------------------------------------------------------------|--|
|                                                                                                            |  |

| Compound                                             | a/Å    | $c/{ m \AA}$ | $V_{\rm m(exp.)}$ | $\Delta V_{ m m}$ |
|------------------------------------------------------|--------|--------------|-------------------|-------------------|
| Cs <sub>3</sub> Ho <sub>2</sub> Cl <sub>9</sub> [4]  | 13.113 | 18.429       | 275.4             | -27.8             |
| $Cs_3Er_2Cl_9$                                       | 13.015 | 18.29        | 269.3             | -32.1             |
| Cs <sub>3</sub> Tm <sub>2</sub> Cl <sub>9</sub> [8]  | 12.997 | 18.274       | 268.3             | -31.7             |
| Cs <sub>3</sub> Yb <sub>2</sub> Cl <sub>9</sub>      | 12.963 | 18.29        | 267.4             | -30.8             |
| Cs <sub>3</sub> Lu <sub>2</sub> Cl <sub>9</sub> [78] | 12.945 | 18.264       | 266.0             | -31.8             |
| Cs <sub>3</sub> Y <sub>2</sub> Cl <sub>9</sub> [79]  | 13.107 | 18.333       | 272.7             | -34.1             |

#### Table 4 Continued

#### Table 4l Compounds $Cs_4LnCl_7$ ( $R\overline{3}m; Z=3$ ) [14]

| Compound                         | a/Å   | $c/{ m \AA}$ | V <sub>m(exp.)</sub> | $\Delta V_{ m m}$ |
|----------------------------------|-------|--------------|----------------------|-------------------|
| $Cs_4ErCl_7$                     | 7.709 | 26.139       | 270.0                | -13.0             |
| $Cs_4TmCl_7$                     | 7.682 | 26.214       | 268.0                | -13.0             |
| $Cs_4YbCl_7$                     | 7.646 | 26.290       | 267.2                | -12.9             |
| Cs <sub>4</sub> YCl <sub>7</sub> | 7.716 | 26.512       | 273.5                | -10.9             |

**Table 4m** Compounds with the NaGdCl<sub>4</sub>-structure (P1; Z=2) [80]

| Compound              | a/Å   | b/Å   | $c/\text{\AA}$ | α/degree | β/degree | γ/degree | V <sub>m(exp.)</sub> | $\Delta V_{ m m}$ |
|-----------------------|-------|-------|----------------|----------|----------|----------|----------------------|-------------------|
| NaEuCl <sub>4</sub>   | 7.040 | 6.783 | 6.682          | 100.96   | 91.97    | 89.96    | 94.7                 | +9.1              |
| NaGdCl <sub>4</sub>   | 7.028 | 6.763 | 6.667          | 100.85   | 91.70    | 89.76    | 93.7                 | +8.6              |
| NaTbCl <sub>4</sub>   | 7.013 | 6.748 | 6.653          | 100.76   | 91.86    | 89.71    | 93.1                 | +8.5              |
| NaDyCl <sub>4</sub>   | 7.003 | 6.738 | 6.643          | 100.71   | 91.62    | 89.76    | 92.7                 | +7.9              |
| L-NaHoCl <sub>4</sub> | 6.992 | 6.728 | 6.633          | 100.66   | 91.60    | 89.62    | 92.3                 | -7.7              |
| NaYCl <sub>4</sub>    | 6.992 | 6.727 | 6.633          | 100.66   | 91.60    | 89.61    | 92.3                 | -5.2              |

**Table 4n** Compounds with the  $\alpha$ -NiWO<sub>4</sub>-structure (P2/c; Z=2) [81]

| Compound                 | a/Å   | $b/{ m \AA}$      | $c/{ m \AA}$ | β/degree | $V_{\rm m(exp.)}$ | $\Delta V_{ m m}$ |
|--------------------------|-------|-------------------|--------------|----------|-------------------|-------------------|
| H-NaHoCl <sub>4</sub>    |       | not given in [81] |              |          |                   |                   |
| NaErCl <sub>4</sub> [12] | 6.322 | 7.598             | 6.742        | 92.3     | 97.5              | -1.6              |
| NaTmCl <sub>4</sub>      | 6.293 | 7.571             | 6.722        | 92.2     | 96.4              | -2.0              |

Table 40 Compounds with the NaLuCl<sub>4</sub>-structure (Pbcn; Z=4) [82]

|                     |       |              | -            |                   |                   |
|---------------------|-------|--------------|--------------|-------------------|-------------------|
| Compound            | a/Å   | $b/{ m \AA}$ | $c/{ m \AA}$ | $V_{\rm m(exp.)}$ | $\Delta V_{ m m}$ |
| NaYbCl <sub>4</sub> | 6.260 | 16.120       | 6.559        | 99.6              | -0.9              |
| NaLuCl <sub>4</sub> | 6.182 | 15.925       | 6.572        | 97.4              | +0.1              |

hexachloro-lanthanides prepared from aqueous solutions crystallize in the orthorhombic space group Pbcm [15]. All these structures can be described as distortions of the cubic elpasolite-type by variations of the mutual orientation of the  $LnCl_{6}^{3-}$  octahedra. The coordination of  $A^+$  by  $Cl^-$  ions decreases from 12 to only 8 in the Cs<sub>3</sub>BiCl<sub>6</sub>-type, which is a less symmetric low-temperature modification. For the sodium-compounds two structure types exist. In both the coordination number is 6 for the  $Ln^{3+}$  and  $Na^{+}$  ions. The reason is that the radii of Na<sup>+</sup> and Ln<sup>3+</sup> are of a comparable size. H-Na<sub>3</sub>TbCl<sub>6</sub>, H-Na<sub>3</sub>DyCl<sub>6</sub> and the compounds with Ln=Ho-Lu have a distorted cryolite-type structure, while L-Na<sub>3</sub>TbCl<sub>6</sub> and L-Na<sub>3</sub>DyCl<sub>6</sub> crystallize with hexagonal cells, in which Na<sup>+</sup> and Ln<sup>3+</sup> ions occupy slightly distorted octahedral holes in a hexagonal closed-packed chloride framework.

For the compounds  $A_3LnCl_6$  the transitions between the cubic H-type and the monoclinic structures are of the non-reconstructive type; there is no significant hysteresis between heating and cooling, and therefore the cubic high-temperature phase cannot be obtained metastably at ambient temperature by quenching. As a consequence it is difficult to prepare single crystals. Meyer succeeded to obtain  $Rb_3YCl_6$  [65] by a transport reaction. Therefore, we have taken all values for compounds  $Rb_3LnCl_6$  in Table 4b from his paper. Analogously we have proceeded for the Cs and K compounds and could obtain single-crystals of Cs<sub>3</sub>YbCl<sub>6</sub> [9] and K<sub>3</sub>ErCl<sub>6</sub> [7] from supercritical acetic acid as described in detail for Cs<sub>3</sub>CrCl<sub>6</sub> [55].

The phase transition of L-A<sub>3</sub>LnCl<sub>6</sub> to H-A<sub>3</sub>LnCl<sub>6</sub> occurs between 392 and 403°C for A=Cs and 408–425°C for the Rb compounds. For Cs<sub>3</sub>TmCl<sub>6</sub> and Cs<sub>3</sub>YbCl<sub>3</sub> a third M-modification exists between ~370 and ~410°C; the still unknown structure is nearly related to the cubic elpasolite-type. For the K compounds the situation is more complicated as Fig. 5 shows [7]. Only the compounds K<sub>3</sub>LnCl<sub>6</sub> with Ln=Er-Lu are stable at 0 K. All other compounds are high-temperature compounds. While a La compound does not exist at all, the range of existence increases from K<sub>3</sub>CeCl<sub>6</sub> (>521°C) to K<sub>3</sub>HoCl<sub>6</sub> (>27°C). However, all compounds could be prepared in a metastable

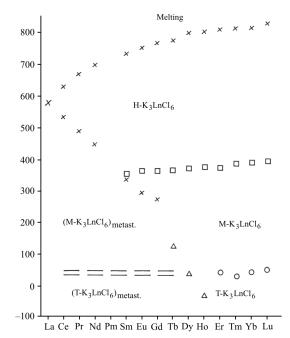
#### TERNARY CHLORIDES OF THE TRIVALENT LATE LANTHANIDES

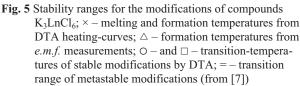
**Table 5** Solution enthalpies  $(\Delta H_{sol}^0)$ , formation entalpies  $(\Delta H_f^0)$  and calculated transition enthalpies  $(\Delta H_u^0)$  in kJ mol<sup>-1</sup> for compounds Cs<sub>3</sub>LnCl<sub>6</sub> [15] and Cs<sub>4</sub>LnCl<sub>7</sub>

| C 1                               | Pbcm mo                   | dification              | C2/c mo                 | dification            |                          |
|-----------------------------------|---------------------------|-------------------------|-------------------------|-----------------------|--------------------------|
| Compound                          | $\Delta {H}_{ m sol}^{0}$ | $\Delta {H}_{ m f}^{0}$ | $\Delta H_{ m sol}^{0}$ | $\Delta {H}_{ m f}^0$ | $\Delta {H}_{ m tr}^{0}$ |
| Cs <sub>3</sub> NdCl <sub>6</sub> | -50.3                     | -44.9                   | -56.3                   | -38.9                 | 6.0                      |
| Cs <sub>3</sub> SmCl <sub>6</sub> | -50.5                     | -59.9                   | -54.1                   | -56.3                 | 3.6                      |
| Cs <sub>3</sub> EuCl <sub>6</sub> | -52.9                     | -64.3                   | -54.3                   | -59.9                 | 4.4                      |
| Cs <sub>3</sub> GdCl <sub>6</sub> | -54.9                     | -74.1                   | -59.3                   | -66.7                 | 4.4                      |
| Cs <sub>3</sub> TbCl <sub>6</sub> | -56.1                     | -78.4                   | -61.0                   | -73.5                 | 4.9                      |
| Cs <sub>3</sub> DyCl <sub>6</sub> | -57.6                     | -85.2                   | -60.4                   | -82.4                 | 2.8                      |
| Cs <sub>3</sub> HoCl <sub>6</sub> | -60.1                     | -95.0                   | -63.1                   | -92.0                 | 3.0                      |
| Cs <sub>3</sub> ErCl <sub>6</sub> | -61.0                     | -96.6                   | -63.6                   | -94.0                 | 2.6                      |
| Cs <sub>3</sub> TmCl <sub>6</sub> | -62.7                     | -95.2                   | -63.8                   | -94.1                 | 1.1                      |
| Cs <sub>3</sub> YbCl <sub>6</sub> | -63.6                     | -94.9                   | -64.6                   | -93.9                 | 1.0                      |

Table 5a Compounds with the composition Cs<sub>3</sub>LnCl<sub>6</sub>

Table 5b Compounds with the composition Cs<sub>4</sub>LnCl<sub>7</sub>


| Compound     | $\Delta H_{ m sol}^{0}$ | $\Delta H_{ m f}^{0}$ | $\Delta H_{ m syn}^{0}$ | Compound    | $\Delta H_{ m sol}^{0}$ | $\Delta {H}_{ m f}^{0}$ | $\Delta {H}^{0}_{ m syn}$ |
|--------------|-------------------------|-----------------------|-------------------------|-------------|-------------------------|-------------------------|---------------------------|
| $Cs_4YbCl_7$ | -54.8                   | -86.1                 | +8.8                    | $Cs_4YCl_7$ | -53.3                   | -87.3                   | +3.3                      |


state with the K<sub>3</sub>MoCl<sub>6</sub>-type structure at ambient temperature by quenching. Beginning with samarium M-modifications are stable (333°C). The transformation temperatures M-K<sub>3</sub>LnCl<sub>6</sub> $\rightarrow$ H-K<sub>3</sub>LnCl<sub>3</sub> increase slowly from 342°C for K<sub>3</sub>SmCl<sub>6</sub> to 397°C for K<sub>3</sub>LuCl<sub>6</sub>. Beginning with holmium a third, low-temperature modification of the K<sub>3</sub>MoCl<sub>6</sub>-type exists as a stable phase. The transition to the M-modification occurs at 50–80°C. The structure of the M-phase is still unknown, but is related to the K<sub>3</sub>MoCl<sub>3</sub>-type structure; the monoclinic *a*- and *c*-axis are equal and  $\beta$ =109.4° (tetrahedral angle).

Sodium hexachloro compounds with Sm and earlier lanthanides do not exist; Na<sub>3</sub>EuCl<sub>6</sub> and Na<sub>3</sub>GdCl<sub>6</sub> even melt congruently, the compounds with Tb, Dy, Ho and Y incongruently. The melting point of the other compounds increases slightly from 562°C for Na<sub>3</sub>ErCl<sub>6</sub> to 580°C for Na<sub>3</sub>LuCl<sub>6</sub> [12]. Low temperature phases with the 'stuffed LiSbF<sub>6</sub>'-type structure are known for compounds with Ln=Eu, Gd, Tb, Dy.

#### Compounds A<sub>2</sub>LnCl<sub>5</sub>

The panorama of the compounds  $A_2LnCl_5$  is much less complicated than that of the hexachloro lanthanides. Only three structure families exist: in the Cs<sub>2</sub>DyCl<sub>5</sub>-type [59] the coordination of the Ln<sup>3+</sup> ions is octahedral [LnCl<sub>4</sub>Cl<sub>2/2</sub>]<sup>2+</sup>; the A<sup>+</sup> ions have a CN=(10+1). The K<sub>2</sub>PrCl<sub>5</sub>-type [66], derived from Y<sub>2</sub>HfS<sub>5</sub> [67], contains chains, formed by monocapped trigonal prisms sharing two common edges. The coordination numbers are seven for Ln<sup>3+</sup> and eight for A<sup>+</sup>. The still unknown struc-





ture of the third group, realized by  $K_2TmCl_5$ ,  $K_2YbCl_5$ and probably  $K_2LuCl_5$ , is assumed to be built up by linked octahedra too, but with a smaller CN for the  $A^+$ ions than in the Cs<sub>2</sub>DyCl<sub>5</sub>-type. With the larger  $Ln^{3+}$  ions La-Nd,  $A_2LnCl_5$ -compounds (A=Cs, Rb, K) with the K<sub>2</sub>PrCl<sub>5</sub>-type structure exist, but no sodium compounds. Beginning with samarium the Cs<sub>2</sub>DyCl<sub>5</sub>-type was found in all Cs compounds. For compounds with the smaller Rb ion its CN=8 stabilizes the K<sub>2</sub>PrCl<sub>5</sub>-type from Rb<sub>2</sub>LaCl<sub>5</sub> to Rb<sub>2</sub>GdCl<sub>5</sub>. Tb and Dy compounds do not exist, and beginning with holmium the  $LnCl_6^{3-}$  octahedra have sufficiently shrinkage, therefore, the Cs<sub>2</sub>DyCl<sub>5</sub>-type with the CN=(10+1) for Rb<sup>+</sup> can be realized. The situation for the K<sup>+</sup> compounds is similar: K<sub>2</sub>PrCl<sub>5</sub>-type from La to Ho, no K<sub>2</sub>ErCl<sub>5</sub> and then the still unknown structure type. With Na only Na<sub>2</sub>LnCl<sub>5</sub>-type structure.

In Table 4g the unit cell parameters in the space group Pbnm (not in the equivalent Pnma) are taken from Meyer's paper [68]. The space group for the  $K_2PrCl_5$ -type compounds in Table 4h is Pnma [66].

#### Compounds ALn<sub>2</sub>Cl<sub>7</sub>

Compounds  $ALn_2Cl_7$  exist in all Cs, Rb, K systems, and in the Na systems of Gd–Ho. At ambient temperature their structures belong to one of two types: the orthorhombic RbDy<sub>2</sub>Cl<sub>7</sub>-type or the symmetry-reduced monoclinic KDy<sub>2</sub>Cl<sub>7</sub>-type. Both structures were determined by Meyer [69] from single-crystal data. They contain layers of face- and edge-sharing monocapped trigonal prisms that are stacked in the [100] direction. The CN is seven for the Ln<sup>3+</sup> and (10+2) for the A<sup>+</sup> ions. Most of the compounds have one or more high-temperature modifications. Their structures are unknown as those of NaGd<sub>2</sub>Cl<sub>7</sub> and NaHo<sub>2</sub>Cl<sub>7</sub>. It should be pointed out that  $ALn_2Cl_7$ -type compounds with *Ln*=La–Nd exist in another structure type.

#### Compounds with miscellaneous composition

The family of the 'enneachlorides' Cs<sub>3</sub>M<sub>2</sub>Cl<sub>9</sub> contains pairs of face-sharing octahedra [M2Cl6Cl6/2] and is well known for compounds  $Cs_3M_2Cl_9$  (*M*=Cr<sup>3+</sup>, Mo<sup>3+</sup>, W<sup>3+</sup>, etc.), which are examples of metal-metal bonds in the double-octahedra. In 1980 Meyer and Schönemund [60] described several compounds with  $M=Ln^{3+}$ , having the  $Cs_3Tl_2Cl_9$ -type structure [70, 71]. The structure of the enneachlorides is related to the CsNiCl<sub>3</sub>-type structure: [NiCl<sub>6/2</sub>]-octahedra are twofold shared to infinite columns. If in [Ni<sub>3</sub>Cl<sub>9</sub>]<sup>3-</sup> each third Ni<sup>2+</sup> is removed and the two other are substituted by two M<sup>3+</sup> ions, the Cs<sub>3</sub>Tl<sub>2</sub>Cl<sub>9</sub> arrangement results. The structure is also related to the perovskite family: [CsCl<sub>3</sub>]-units form hexagonal-dense (ABAB...) stacking, while in the Cs<sub>3</sub>Cr<sub>2</sub>Cl<sub>9</sub>-type the stacking is ABCACB... The CN twelve of the Cs<sup>+</sup> ions by the Cl<sup>-</sup> ions fits well because of the similar ionic radii [72]:  $r_{\text{CN12}}(\text{Cs}^+)=1.88$  L;  $r(Cl^{-})=1.81$  L. The Ln<sup>3+</sup> ions are better fitted to octahedral holes the smaller they are. Thus, the existence of enneachlorides begins with Ln=Ho. In the phase diagram KCl/YbCl<sub>3</sub> [9] an Yb compound, stable from 394°C was found, but nothing is known about its structure. In Table 4 the unit parameters from the most actual measurements are listed.

Compounds of the Cs<sub>4</sub>LnCl<sub>7</sub>-type exist with the smaller lanthanide ions Ho to Yb, with Y and probably with Lu, too. Their structure was determined with single crystals for Cs<sub>4</sub>YbCl<sub>7</sub> [14], and for some other compounds from powder patterns (Table 4i). The description of the structure is similar to that of the elpasolite-like compounds by Benachenhou *et al.* [63]. Layers with the composition Cs<sub>2</sub>LnCl<sub>6</sub>, containing isolated [LnCl<sub>6</sub>]<sup>3–</sup> octahedra all with the same orientation, are isolated from each other by layers of composition Cs<sub>2</sub>Cl, containing sixfold disordered chloride ions.

#### Sodium compounds

Beginning with europium compounds NaLnCl<sub>4</sub> exist with all late lanthanides. For the larger ones, Eu to Dy, the coordination number for both cations is seven. This is the NaGdCl<sub>4</sub>-type with monocapped trigonal prisms for Ln<sup>3+</sup> and Na<sup>+</sup>. According to Meyer [80] the triclinic structure is related to the fluorite-type. With Ln=Er–Lu all cations have octahedral coordination in two closely related types: monoclinic  $\alpha$ -NiWO<sub>4</sub>-type [81] for Ln=Er, Tm and orthorhombic NaLuCl<sub>4</sub>-type [82] for Ln=Yb [9] and Lu. NaHoCl<sub>4</sub> is dimorphic. L-NaHoCl<sub>4</sub> crystallizes with the NaGdCl<sub>4</sub>-type structure, while H-NaHoCl<sub>4</sub> belongs to the NiWO<sub>4</sub> family.

Meyer postulated [81] that all double-chlorides NaLnCl<sub>4</sub> are dimorphic. With decreasing temperatures there is a transition from the NaGdCl<sub>4</sub>-type to the NaErCl<sub>4</sub>-type. This transition occurs at ~360°C for NaEuCl<sub>4</sub>, at ~50°C for NaHoCl<sub>4</sub> and NaYCl<sub>4</sub>, at ~-30°C for NaErCl<sub>4</sub> and at ~-50°C for NaLuCl<sub>4</sub>. However, he did not report unit cell parameters for the respective structures. We have found with DTA and *e.m.f.* measurements dimorphism of this type only for NaHoCl<sub>4</sub> [4] and NaYCl<sub>4</sub> [5] with transition-temperatures of 374 and 395°C, respectively. We observed phase transitions in NaEuCl<sub>4</sub> (360°C) and NaGdCl<sub>4</sub> (283°C), but we only can say that one modification crystallizes in the NaGdCl<sub>4</sub>-type structure, while the structure of the second modification is unknown.

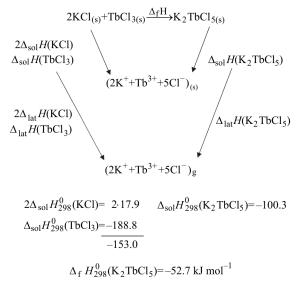
## Thermodynamic properties

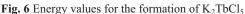
#### Solution enthalpies

Solution enthalpies,  $\Delta H_{sol}^0$ , were measured of all ternary chlorides which are either stable at ambient temperature or, in case of high-temperature modifications, were obtained metastably without partial decomposition by quenching. Samples of 2–5 g were dissolved in an isoperibolic under-water-calorimeter [83]. Because of the relatively high sample mass no compounds of the very expensive elements Tm and Lu were measured. An exception was made with their Na-compounds. The solvent H<sub>2</sub>O was slightly acidified with HCl ( $10^{-2}$  mol L<sup>-1</sup>) to prevent hydrolysis. The volume of the solution was 1.3 l; thus with a dissolution rate 1:15000 virtually ideal solutions were obtained. At least two samples of each substance were measured. Together with the similarly measured solution enthalpies of the binary chlorides LnCl<sub>3</sub> and ACl, enthalpies of formation  $\Delta H_{\rm f}^0$  according to  $nACl_{\rm (s)}+LnCl_{3(s)}=A_{\rm n}LnCl_{3+n(s)}$  could be calculated:

$$\Delta H_{\rm f}^{0}(A_3 {\rm LnCl}_{3+n}) = = [n\Delta H_{\rm sol}^{0}({\rm ACl}) + \Delta H_{\rm sol}^{0}({\rm LnCl}_{3})] - \Delta H_{\rm sol}^{0}(A_3 {\rm LnCl}_{3+n})$$

As the cycle in Fig. 6 shows the enthalpies  $\Delta H_{\rm f}^0$  are identical with the change in lattice enthalpies at 298 K when forming the ternary chlorides from their binary 'parent compounds'. However, still more important is the change in lattice enthalpies relative to the 'neighbour compounds' in the phase diagrams. We have called this difference 'synreaction enthalpy',  $\Delta H_{\rm syn}^0$ . These enthalpies must be calculated from the original  $\Delta H_{\rm f}^0$  values. The  $\Delta H_{\rm f}^0$  values for the binary compounds ACl and LnCl<sub>3</sub> as a basis for the calculations were set equal zero. Taking the system CsCl/HoCl<sub>3</sub> as an example, the syn-reactions for the four existing compounds are:


$$\begin{split} & 1/3Cs_{1.5}HoCl_{4.5}+2/3HoCl_3 = Cs_{0.5}HoCl_{3.5} \\ & 1/3Cs_{0.5}HoCl_{3.5}+2/3Cs_2HoCl_5 = Cs_{1.5}HoCl_{4.5} \\ & 2/3Cs_{1.5}HoCl_{4.5}+1/3Cs_3HoCl_6 = Cs_2HoCl_5 \end{split}$$


 $CsCl+Cs_2HoCl_5 = Cs_3HoCl_6$ 

All equations are normalized to one  $\text{Ln}^{3+}$  ion per formula unit so that  $1/2\text{CsLn}_2\text{Cl}_7 = \text{Cs}_{0.5}\text{Ln}\text{Cl}_{3.5}$  and  $1/2\text{Cs}_3\text{Ln}_2\text{Cl}_9 = \text{Cs}_{1.5}\text{Ln}\text{Cl}_{4.5}$ . For the simplest reaction, that of  $\text{Cs}_3\text{HoCl}_6$ , the syn-reaction is  $\Delta H_{\text{syn}}^0$  (Cs<sub>3</sub>HoCl<sub>6</sub>) =  $\Delta H_f^0$  (Cs<sub>3</sub>HoCl<sub>6</sub>)– $\Delta H_f^0$  (Cs<sub>2</sub>HoCl<sub>5</sub>).

Most compounds are formed from their neighbours with exothermic lattice enthalpies,  $\Delta H_{syn}^0$  which are negative quantities. However, some compounds exhibit endothermic synreaction enthalpies. Here must be taken into account, that the true thermodynamic function for stability is not enthalpy but the free (Gibbs) enthalpy  $\Delta G$ . Both functions are connected by the Gibbs–Helmholtz relation  $\Delta G = \Delta H - T \Delta S$ . In Table 7 results of *e.m.f.* measurements are compiled, from which reaction entropies can be derived.

The exothermic solution enthalpies of the anhydrous lanthanide chlorides are compiled in Table 2; the





measured values for the alkali-metal chlorides are endothermic (in kJ mol<sup>-1</sup>): CsCl=18.1(2); RbCl=17.6(2); KCl=17.9(1); NaCl=4.5(1). It should be pointed out that we have measured the solution enthalpies of all hydrates LnCl<sub>3</sub>·xH<sub>2</sub>O, too [34].

In Table 5 solution- and formation-enthalpies from improved measurements [15] for the Pbcm and C2/c-modifications of the compounds  $Cs_3LnCl_6$  are compiled. From these data transition enthalpies (Pbcm) $\rightarrow$ (C2/c) are calculated. They are endothermic; consequently, the Pbcm-modification is stable at ambient temperature. Furthermore, values for Cs<sub>4</sub>YbCl<sub>7</sub> and Cs<sub>4</sub>YCl<sub>7</sub> are given. The syn-reaction enthalpies for the formation from the two neighbour-compounds CsCl+Cs<sub>3</sub>LnCl<sub>6</sub>=Cs<sub>4</sub>LnCl<sub>4</sub> are positive. Thus, these compounds are formed with a loss of lattice energy.

In Table 6 solution enthalpies,  $\Delta H_{sol}^0$ , enthalpies of formation from ACl and LnCl<sub>3</sub>,  $\Delta H_{f}^0$ , and syn-reaction enthalpies,  $\Delta H_{syn}^0$ , are compiled for all compounds found in phase diagrams, supplemented by values from the literature,  $\Delta H_{f}^0$  (lit.). Some incongruently melting compounds A<sub>2</sub>LnCl<sub>5</sub> could not be formed stoichiometrically pure by annealing. In this case we have taken  $\Delta H_{f}^0$  values from *e.m.f.* measurements (next chapter) for calculating  $\Delta H_{syn}^0$  values. They are given in brackets. The fourth column brings values taken from the literature (Blachnik and Selle [84]).

#### Gibbs free energies from e.m.f. measurements

It is a fundamental theorem in thermodynamics that not the enthalpy,  $\Delta H$ , but the Gibbs free energy,  $\Delta G$ , is the true criterion for stability. As explained in the last chapter, in a system ACl/LnCl<sub>3</sub> energies of synreaction are the crucial quantities. That is, a certain compound is stable at a certain temperature, if its  $\Delta G_{syn}^0$  is negative! From the Gibbs–Helmholtz relation it follows that at T=0 K stability is given by  $\Delta H_{syn}^0$  alone: a gain in (lattice) energy, U, (negative  $\Delta H$ ) must exist. However, at higher temperatures the entropy term becomes more and more important. A sufficiently high gain in entropy might compensate a positive change in enthalpy. The critical temperature can be calculated by the relation  $\Delta G_{syn}^0 = 0$  or  $\Delta H_{syn}^0 = T\Delta S_{syn}^0$ .

 $\Delta G$  values can be determined by *e.m.f.* measurements of the reactions  $nACl+A_mLnCl_{m+3}=A_{(m+n)}LnCl_{(m+n+3)}$  in galvanic chlorine cells for solid electrolytes [85], using the relation  $\Delta G=-nFE$  (*n*=transported charge; *F*=Faraday constant; *E*=measured *e.m.f.*). For Rb<sub>3</sub>TbCl<sub>6</sub>, for instance, the electrolytes are RbCl and Rb<sub>0.5</sub>TbCl<sub>3.5</sub> separated by Rb<sup>+</sup> conducting diaphragm.

The dependence of the *e.m.f.* on *T* has been proved to be linear at temperatures  $\geq 250^{\circ}$ C, so that a regression equation E=a+bT can be transformed directly to  $\Delta G=\Delta H-T\Delta S$  by multiplication with -nF. That means,  $\Delta H$  and  $\Delta S$  are temperature-independent in the range of measurement. The whole procedure will be explained, using the system RbCl/TbCl<sub>3</sub> [2] as an example. According to the DTA measurements two compounds exist, RbTb<sub>2</sub>Cl<sub>7</sub>=2Rb<sub>0.5</sub>TbCl<sub>3.5</sub> and Rb<sub>3</sub>TbCl<sub>6</sub> with L $\rightarrow$ H transformation at 408°C.

The cell for the *e.m.f.* measurements of the reaction 0.5RbCl+H-TbCl<sub>3</sub>=Rb<sub>0.5</sub>TbCl<sub>3.5</sub> was built from discs of RbCl *vs.* mixtures containing 95 and 75 mol% TbCl<sub>3</sub>, respectively. Approximately 30 pairs of *e.m.f.*/mV *vs. T*/K values were measured for each run in the temperature range 600 to 635 K. The mean of both calculated regression lines gave *e.m.f.*/mV= 377.3+0.3400*T*/K. Multiplied with -0.5F:  $\Delta G_r^0$ /kJ mol<sup>-1</sup>=-18.2-0.0164T/K with an accuracy of  $\Delta G_r^0$  is ±0.4 kJ mol<sup>-1</sup>.

For this reaction is  $\Delta G_r^0 = \Delta G_f^0$ ,  $\Delta H_f^0 = 18.2 \pm 0.3 \text{ kJ mol}^{-1}$  and  $\Delta S_f^0 = 16.4 \pm 0.5 \text{ J K}^{-1} \text{ mol}^{-1}$ .

 $\Delta H_{\rm f}^0$  from solution enthalpy measurements is -22.5 kJ mol<sup>-1</sup>. The agreement between both measurements of  $\Delta H$  is not excellent, but sufficient ( $\Delta$  up to max. 4 kJ mol<sup>-1</sup>). One has to take into account that the linearity, i.e.  $\Delta H$  independent of *T*, may not be given down to ambient temperature. Therefore,  $\Delta c_{\rm p}$  measurements are necessary to explain the differences.

For the second reaction, 2.5RbCl+Rb<sub>0.5</sub>TbCl<sub>3.5</sub>= Rb<sub>3</sub>TbCl<sub>6</sub> two samples with 55 and 45 mol% TbCl<sub>3</sub> were used. For the RbCl/55 mol% TbCl<sub>3</sub>-sample the computer plot *e.m.f.* vs. T is shown in Fig. 7. The curve consists of two lines with a kink at the transition-temperature L $\rightarrow$ H(Rb<sub>3</sub>TbCl<sub>3</sub>). Thus, two mean regression equations result:

For H-Rb<sub>3</sub>TbCl<sub>6</sub> *e.m.f.*/mV=112.3+0.1948*T*/K and  $\Delta G_r^0$ /kJ mol<sup>-1</sup>=-27.1-0.0470*T*/K, for L-Rb<sub>3</sub>TbCl<sub>6</sub> *e.m.f.*/mV=156.3+0.1285*T*/K and  $\Delta G_r^0$ /kJ mol<sup>-1</sup>=-37.7-0.0310*T*/K.

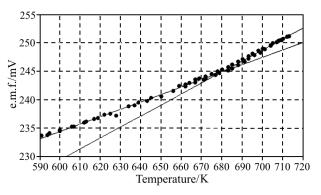



Fig. 7 Computer plot of *e.m.f. vs. T* for the reaction 2.5RbCl+Rb<sub>0.5</sub>TbCl<sub>3.5</sub> (from [2])

The transition enthalpy is +10.6 kJ mol<sup>-1</sup> and the transition entropy 16.0 J mol<sup>-1</sup> K<sup>-1</sup>. The transition-temperature is given by  $\Delta G^0(\text{H}) = \Delta G^0(\text{L})$  or  $T_{\text{tr}} = \Delta_{\text{tr}} H^0 / \Delta_{\text{tr}} S^0 = 663 \,^{\circ}\text{K}$  (390°C). The temperature from DTA heating-curves is higher for kinetic reasons, being 408°C. Obviously, the functions for synreaction are identical with  $\Delta G_r^0(\text{Rb}_3\text{TbCl}_6)$ .

The Gibbs free energy of formation from  $3RbCl+TbCl_3$  is

 $\Delta G_{\rm f}^{0}({\rm Rb}_{3}{\rm TbCl}_{6}) = \Delta G_{\rm r}^{0}({\rm Rb}_{0.5}{\rm TbCl}_{3.5}) + \Delta G_{\rm r}^{0}({\rm Rb}_{3}{\rm TbCl}_{6})$ 

Therefore, for H-Rb<sub>3</sub>TbCl<sub>6</sub>  $\Delta H_f^0$ =-45.3 kJ mol<sup>-1</sup> and  $\Delta S_f^0$ =63.4 J K<sup>-1</sup> mol<sup>-1</sup> and for L-Rb<sub>3</sub>TbCl<sub>6</sub>  $\Delta H_f^0$ = -55.9 kJ mol<sup>-1</sup> and  $\Delta S_f^0$ =47.4 J K<sup>-1</sup> mol<sup>-1</sup>. For the 1:2-compound the synreaction is

1/6Rb<sub>3</sub>TbCl<sub>6</sub>+5/6TbCl<sub>3</sub>=Rb<sub>0.5</sub>TbCl<sub>3.5</sub>

and

$$\Delta G_{\rm syn}^0 = \Delta G_{\rm f}^0 ({\rm Rb}_{0.5} {\rm TbCl}_{3.5}) - \frac{-1/6\Delta G_{\rm c}^0 ({\rm Rb}_3 {\rm TbCl}_6) - 5/6\Delta G_{\rm c}^0 ({\rm TbCl}_3)}{-1/6\Delta G_{\rm c}^0 ({\rm TbCl}_6) - 5/6\Delta G_{\rm c}^0 ({\rm TbCl}_3)}$$

with  $\Delta G_{\rm f}^0$  (TbCl<sub>3</sub>)=0, because TbCl<sub>3</sub> (and RbCl) are chosen as basic compounds. With the foregoing relation between  $\Delta G_{\rm f}^0$  and the  $\Delta G_{\rm r}^0$  it is

$$\Delta G_{syn}^{0} (Rb_{0.5}TbCl_{3.5}) =$$
  
=5/6\Delta G\_{r}^{0} (Rb\_{0.5}TbCl\_{3.5}) - 1/6\Delta G\_{r}^{0} (Rb\_{3}TbCl\_{6})

The calculated functions related to L-Rb<sub>3</sub>TbCl<sub>6</sub> are  $\Delta H^0_{syn}$  (Rb<sub>0.5</sub>TbCl<sub>3.5</sub>)=-8.9 kJ mol<sup>-1</sup> and  $\Delta S^0_{syn}$  (Rb<sub>0.5</sub>TbCl<sub>3.5</sub>)=8.5 J K<sup>-1</sup> mol<sup>-1</sup>. For both compounds  $\Delta G^0_{syn}$  cannot become zero; the compounds should be stable at all temperatures, on the premises of temperature-independence of  $\Delta H$  and  $\Delta S$ .

There is another situation in the system KCl/TbCl<sub>3</sub>. Here for M-K<sub>3</sub>TbCl<sub>6</sub>  $\Delta G_{syn}^0 = \Delta G_r^0$ 

$$\Delta G/\text{kJ} \text{ mol}^{-1} = 14.5 - 0.0464 T/\text{K}$$
  
with  $\Delta G_{\text{syn}}^0 = 0$  at 312 K (39°C).

## TERNARY CHLORIDES OF THE TRIVALENT LATE LANTHANIDES

| literature [84] | $\Delta H_{\rm f}$ | $\Delta H_{ m syn}^{0}$                 | $\Delta H_{\rm f}^0$                   | $\Delta H_{ m sol}^0$                     | Compound                                                                                                                                                                             |
|-----------------|--------------------|-----------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                    | -16.0                                   | 28.3                                   | -151.4                                    | 0.5CsTb <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                 |
|                 |                    | -2.1                                    | 57.5                                   | -95.1                                     | Cs <sub>2</sub> TbCl <sub>5</sub>                                                                                                                                                    |
|                 |                    | -13.9                                   | 73.5                                   | -61.0                                     | -Cs <sub>3</sub> TbCl <sub>6</sub>                                                                                                                                                   |
| -39.0           |                    | -14.9                                   | 32.4                                   | -155.4                                    | $.5 CsDy_2 Cl_7$                                                                                                                                                                     |
| 05.4            |                    | -9.2                                    | 71.8                                   | -90.2                                     | Cs <sub>2</sub> DyCl <sub>5</sub>                                                                                                                                                    |
| -85.4           |                    | -10.6                                   | 82.4                                   | -60.4                                     | -Cs <sub>3</sub> DyCl <sub>6</sub>                                                                                                                                                   |
|                 |                    | -11.4                                   | 32.8                                   | -167.6                                    | .5CsHo <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                  |
|                 |                    | +1.5                                    | 64.4                                   | -117.9                                    | .5Cs <sub>3</sub> Ho <sub>2</sub> Cl <sub>9</sub>                                                                                                                                    |
|                 |                    | -7.4                                    | 82.0)                                  | -60.1                                     | s <sub>2</sub> HoCl <sub>5</sub>                                                                                                                                                     |
|                 |                    | -13.0                                   | 95.0                                   |                                           | -Cs <sub>3</sub> HoCl <sub>6</sub>                                                                                                                                                   |
| -41.9           |                    | -13.2                                   | 36.8                                   | -166.0                                    | .5CsEr <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                  |
|                 |                    | -5.0                                    | 70.8                                   | -113.9                                    | $5Cs_3Er_2Cl_9$                                                                                                                                                                      |
| -98.5           |                    | -1.8 -13.7                              | 80.3)<br>94.0                          | -63.3                                     | $s_2 ErCl_5$                                                                                                                                                                         |
| -98.5           |                    |                                         |                                        |                                           | -Cs <sub>3</sub> ErCl <sub>6</sub>                                                                                                                                                   |
|                 |                    | -4.6                                    | 29.5                                   | -174.2                                    | 5CsYb <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                   |
|                 |                    | -14.8                                   | 74.8                                   | -110.8                                    | $5Cs_3Yb_2Cl_9$                                                                                                                                                                      |
| -96.7           |                    | $^{+6.0}_{-18.7}$                       | 75.2<br>93.9                           | $-101.4 \\ -64.6$                         | s <sub>2</sub> YbCl <sub>5</sub><br>·Cs <sub>3</sub> YbCl <sub>6</sub>                                                                                                               |
| -90.7           |                    |                                         |                                        |                                           |                                                                                                                                                                                      |
|                 |                    | -12.0                                   | 32.6                                   | -171.2                                    | $5CsY_2Cl_7$                                                                                                                                                                         |
|                 |                    | +0.7                                    | 61.8                                   | -123.8                                    | $5Cs_3Y_2Cl_9$                                                                                                                                                                       |
|                 |                    | -5.4 -14.9                              | 77.4)<br>92.3                          | -66.2                                     | s <sub>2</sub> YCl <sub>5</sub><br>-Cs <sub>3</sub> YCl <sub>6</sub>                                                                                                                 |
|                 |                    |                                         |                                        |                                           |                                                                                                                                                                                      |
|                 |                    | -12.2                                   | 22.5                                   | -157.5                                    | .5RbTb <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                  |
|                 |                    | -39.2                                   | 61.7                                   | -74.3                                     | -Rb <sub>3</sub> TbCl <sub>6</sub>                                                                                                                                                   |
|                 |                    | -13.2                                   | 24.7                                   | -163.6                                    | .5RbDy <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                  |
|                 |                    | -44.1                                   | 68.8                                   | -75.9                                     | -Rb <sub>3</sub> DyCl <sub>6</sub>                                                                                                                                                   |
|                 |                    | -19.7                                   | 32.5                                   | -168.1                                    | .5RbHo <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                  |
|                 |                    | -44.3                                   | 76.8                                   | -79.8                                     | -Rb <sub>3</sub> HoCl <sub>6</sub>                                                                                                                                                   |
|                 |                    |                                         |                                        |                                           | Rb <sub>2</sub> HoCl <sub>5</sub> stable>414°C)                                                                                                                                      |
|                 |                    | -18.4                                   | 31.3                                   | -171.9                                    | .5RbEr <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                  |
|                 |                    | -46.1                                   | 77.4                                   | -81.7                                     | -Rb <sub>3</sub> ErCl <sub>6</sub>                                                                                                                                                   |
|                 |                    |                                         |                                        |                                           | $Rb_2ErCl_5$ stable>348°C)                                                                                                                                                           |
|                 |                    | -21.5                                   | 37.3                                   | -166.7                                    | .5RbYb <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                  |
|                 |                    | +3.1                                    | 63.1                                   | -114.5                                    | b <sub>2</sub> YbCl <sub>5</sub>                                                                                                                                                     |
|                 |                    | -22.3                                   | 85.4                                   | -74.6                                     | -Rb <sub>3</sub> YbCl <sub>6</sub>                                                                                                                                                   |
|                 |                    | -16.6                                   | 28.9                                   | -175.1                                    | .5RbY <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                   |
|                 |                    | -44.9                                   | 73.8                                   | -86.2                                     | -Rb <sub>3</sub> YCl <sub>6</sub>                                                                                                                                                    |
|                 |                    | +1.0                                    | 12.2                                   | -167.6                                    | .5KTb <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                   |
|                 |                    | -25.6                                   | 52.7                                   | -107.0<br>-100.3                          | $L_2$ TbCl <sub>5</sub>                                                                                                                                                              |
|                 |                    | +15.7                                   | 37.0                                   | -98.1                                     | -K <sub>3</sub> TbCl <sub>6</sub>                                                                                                                                                    |
| -23.9           |                    | -6.8                                    | 20.9                                   | -167.2                                    | .5KDy <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                   |
| -23.9           |                    | -22.3                                   | 56.5                                   | -107.2<br>-104.8                          | $L_2DyCl_5$                                                                                                                                                                          |
| -43.9           |                    | +13.4                                   | 43.1                                   | -100.3                                    | $-K_3DyCl_6$                                                                                                                                                                         |
| -24.8           |                    | -10.8                                   | 27.3                                   | -173.2                                    | .5KH0 <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                   |
| -27.0           |                    | -10.8<br>-22.7                          | 65.7)                                  | -1/3.2                                    | $L_2$ HoCl <sub>5</sub>                                                                                                                                                              |
|                 |                    | +12.2                                   | 53.5                                   | -102.2                                    | -K <sub>3</sub> HoCl <sub>6</sub>                                                                                                                                                    |
|                 |                    |                                         |                                        |                                           | .5KEr <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                   |
| -56.9           |                    | -16.8 -28.0                             | 25.8<br>53.7                           | $-177.2 \\ -104.5$                        | -K <sub>3</sub> ErCl <sub>6</sub>                                                                                                                                                    |
| 50.9            |                    |                                         |                                        |                                           |                                                                                                                                                                                      |
|                 |                    | -4.2                                    | 15.1                                   | -188.8                                    | .5KYb <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                   |
| -57.0           |                    | -5.1                                    | 43.3<br>53.6                           | -133.7                                    |                                                                                                                                                                                      |
| -57.0           |                    |                                         |                                        |                                           |                                                                                                                                                                                      |
|                 |                    |                                         |                                        |                                           |                                                                                                                                                                                      |
|                 |                    |                                         |                                        |                                           |                                                                                                                                                                                      |
|                 |                    | -5.1<br>-10.3<br>-4.4<br>-26.7<br>+15.7 | 43.3<br>53.6<br>20.05<br>63.4)<br>47.7 | -133.7<br>-105.5<br>-183.8<br>-<br>-111.4 | K <sub>2</sub> YbCl <sub>5</sub><br>L-K <sub>3</sub> YbCl <sub>6</sub><br>0.5KY <sub>2</sub> Cl <sub>7</sub><br>K <sub>2</sub> YCl <sub>5</sub><br>L-K <sub>3</sub> YCl <sub>6</sub> |

| Table 6 Solution- | , formation- and | synreaction enthal | pies of ternar | v chlorides of the | trivalent late lanthanide | es [kJ mol <sup><math>-1</math></sup> ] |
|-------------------|------------------|--------------------|----------------|--------------------|---------------------------|-----------------------------------------|
|-------------------|------------------|--------------------|----------------|--------------------|---------------------------|-----------------------------------------|

| Compound                                                                                           | $\Delta H_{ m sol}^{0}$              | $\Delta {H}_{ m f}^{0}$      | $\Delta H_{ m syn}^{0}$                  | $\Delta H_{\rm f}^{0}$ /literature [84] |
|----------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------|------------------------------------------|-----------------------------------------|
| $NaTb_2Cl_7$<br>$NaTbCl_4$<br>$Na_2TbCl_5$<br>L-Na_3TbCl_6                                         | -193.1<br>-185.0<br>-182.0<br>-179.1 | +6.6<br>+0.7<br>+2.2<br>+3.8 | $^{+6.2}_{-4.4}$<br>$\pm 0$<br>$^{+1.6}$ |                                         |
| 0.5NaDy <sub>2</sub> Cl <sub>7</sub><br>NaDyCl <sub>4</sub><br>L-Na <sub>3</sub> DyCl <sub>6</sub> | -198.8<br>-190.7<br>-181.7           | +4.0<br>-1.9<br>-1.9         | +4.9<br>-4.7<br>±0                       |                                         |
| 0.5NaHo <sub>2</sub> Cl <sub>7</sub><br>L-NaHoCl <sub>4</sub><br>Na <sub>3</sub> HoCl <sub>6</sub> | -204.7<br>-196.8<br>-190.6           | -2.45<br>-8.1<br>-5.3        | $^{+1.6}_{-5.1}_{+2.8}$                  |                                         |
| NaErCl <sub>4</sub><br>Na <sub>3</sub> ErCl <sub>6</sub>                                           | -201.7<br>-187.5                     | -5.7 -10.9                   | -2.1<br>-5.2                             |                                         |
| NaTmCl <sub>4</sub><br>Na <sub>3</sub> TmCl <sub>6</sub>                                           | -200.6<br>-187.9                     | -7.1 -10.8                   | -3.5<br>-3.7                             |                                         |
| NaYbCl <sub>4</sub><br>Na <sub>3</sub> YbCl <sub>6</sub>                                           | $-189.4 \\ -173.6$                   | -19.0<br>-25.8               | -10.4 -6.8                               |                                         |
| NaLuCl₄<br>Na₃LuCl <sub>6</sub>                                                                    | -206.2<br>-189.1                     | -0.9<br>-9.0                 | +2.1 - 8.1                               |                                         |
| Na <sub>3</sub> YCl <sub>6</sub>                                                                   | -190.9                               | -8.4                         |                                          |                                         |

Table 6 Continued

That is, below this temperature the compound is no longer stable; the entropy term  $-\Delta ST$  cannot any longer compensate the endothermic synreaction-enthalpy.

The inverted case is realized too. In the system KCl/HoCl<sub>3</sub> the compound K<sub>2</sub>HoCl<sub>5</sub> decomposes according to DTA measurements at 445°C to H-K<sub>3</sub>HoCl<sub>6</sub> and K<sub>0.5</sub>HoCl<sub>3.5</sub>. For the formation from 1.5KCl+K<sub>0.5</sub>HoCl<sub>3.5</sub>,  $\Delta G_r^0$ /kJ mol<sup>-1</sup>=-38.4+0.0110*T*/K. The synreaction is 0.6K<sub>3</sub>HoCl<sub>6</sub>+0.4K<sub>0.5</sub>HoCl<sub>3.5</sub>= K<sub>2</sub>HoCl<sub>5</sub> with  $\Delta G_{syn}^0$ /kJ mol<sup>-1</sup>=-22.2+0.0322*T*/K. It becomes zero at 689 K (416°C), the temperature of decomposition.

The reported evaluations are restricted by two experimental deficiencies:

- The temperature range for the measurements is restricted. If solid-state reactions take place outside this range extrapolations beyond the reaction temperature are not reasonable.
- Our experiences have shown that the *e.m.f.* cells break down for *e.m.f.* values higher than ~450 mV and/or temperatures higher than 450 K. ('Break down' means that no constant potentials are yielded.) These limits are deeper in general for Cs compounds and with the smaller  $\text{Ln}^{3+}$  ions. Thus, no  $\Delta G_{\rm f}^0$  values for the compounds  $A_{0.5}\text{LnCl}_{3.5}$ could be calculated. The situation is different for the synreaction-functions. Here the  $\Delta G_{\rm r}^0$  values for the LnCl<sub>3</sub>-rich neighbours are eliminated in terms for  $\Delta G_{\rm syn}^0$ . For the ternary Cs compounds of Yb no *e.m.f.* values could be measured at all.

In Table 7 the expressions  $\Delta G_r^0 = \Delta H_r^0 - \Delta S_r^0 T$  and  $\Delta G_{syn}^0 = \Delta H_{syn}^0 - \Delta S_{syn}^0 T$  for all the compounds, for which *e.m.f.* measurements could be performed, are

compiled together with the temperature range of the measurements. They are comprehended in blocks with all compounds of a system ACl/LnCl<sub>3</sub>. If measurements with H- and L-modifications could be done synreactions with both of them are given. Then also transformation functions are calculated. Furthermore, formation temperatures for compounds with endothermic (positive)  $\Delta H_{syn}^0$  values are listed.

## The relation between thermodynamics and structure

## General connections

-

As has been already explained the radii of the  $\text{Ln}^{3+}$ and  $\text{A}^+$  ions determine the crystal structures of the different ternary chlorides. This relation should result from the different energetic functions, namely, the enthalpies of formation from ACl and LnCl<sub>3</sub>,  $\Delta H_{\text{f}}^0$ , and the synreaction energies,  $\Delta H_{\text{syn}}^0$  and  $\Delta G_{\text{syn}}^0$ .

•  $\Delta H_{\rm f}^0$  reflects the loss in lattice enthalpy by the formation of the ternary chlorides.

For the compound  $A_nLnCl_{3+n}$  it is

$$\Delta H^0_{\text{lat}} (A_n \text{LnCl}_{3+n}) =$$
  
=  $n\Delta H^0_{\text{lat}} (A\text{Cl}) + \Delta H^0_{\text{lat}} (\text{LnCl}_3) + \Delta H^0_{\text{f}} (A_n \text{LnCl}_{3+n})$ 

The lattice enthalpies of the alkali-metal chlorides can be taken from textbooks of solid-state chemistry. They range, for instance, from  $\Delta H_{lat}^0$  (CsCl)= -640.6 kJ mol<sup>-1</sup> to  $\Delta H_{lat}^0$  (NaCl)=-767.8 kJ mol<sup>-1</sup>. The  $\Delta H_{lat}^0$  (LnCl<sub>3</sub>) values are given in Table 2 and range from  $\Delta H_{lat}^0$  (TbCl<sub>3</sub>)=-4476 to  $\Delta H_{lat}^0$  (LnCl<sub>3</sub>)=

#### TERNARY CHLORIDES OF THE TRIVALENT LATE LANTHANIDES

| Cs-compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Delta G_{\rm r}^{\rm 0} = \Delta H_{\rm r}^{\rm 0} - \Delta S_{\rm r}^{\rm 0} T$                                                                                                                                          | Temperature range/K                                                                              | $\Delta G_{\rm syn}^0 = \Delta H_{\rm syn}^0 - \Delta S_{\rm syn}^0 T$                                                                                                                                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Cs <sub>2</sub> TbCl <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                      | -30.1-0.0242 <i>T</i>                                                                                                                                                                                                       | 575–690 K                                                                                        | H: -6.2-0.0065 <i>T</i><br>L: -11.8-0.0109 <i>T</i>                                                                                                                                                         |  |  |
| H-Cs <sub>3</sub> TbCl <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                    | -9.8 - 0.0200T                                                                                                                                                                                                              | 665–725                                                                                          | id. $\Delta G_{\rm r}^0$<br>id. $\Delta G_{\rm r}^0$                                                                                                                                                        |  |  |
| L-Cs <sub>3</sub> TbCl <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                    | -17.0-0.0091T                                                                                                                                                                                                               | 580–660                                                                                          |                                                                                                                                                                                                             |  |  |
| Transform. $L \rightarrow H-Cs_3TbCl$                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sub>6</sub> : $\Delta H_{tr}^{0}$ =7.2 kJ mol <sup>-1</sup> ; $\Delta S_{tr}^{0}$ =10.9 J K <sup>-</sup>                                                                                                                   | $^{1}$ mol <sup>-1</sup> ; $T_{tr}$ =661 K; (388°C; DTA                                          | =400°C)                                                                                                                                                                                                     |  |  |
| Cs <sub>2</sub> DyCl <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                      | -37.1-0.0161 <i>T</i>                                                                                                                                                                                                       | 560-650                                                                                          | -6.0-0.0047T                                                                                                                                                                                                |  |  |
| L-Cs <sub>3</sub> DyCl <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                    | -14.8-0.0123T                                                                                                                                                                                                               | 580-650                                                                                          | id. $\Delta G_{\rm r}^0$                                                                                                                                                                                    |  |  |
| 0.5Cs <sub>3</sub> Ho <sub>2</sub> Cl <sub>9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                     | -32.3-0.00207                                                                                                                                                                                                               | 580-670                                                                                          | +1.0-0.00297                                                                                                                                                                                                |  |  |
| Cs2HoCl5<br>L-Cs3HoCl6                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -17.6 + 0.0034T<br>-16.8 - 0.0093T                                                                                                                                                                                          | 600–660<br>570–660                                                                               | -6.1+0.0053T<br>id. $\Delta G_r^0$                                                                                                                                                                          |  |  |
| $\Delta G_{\text{syn}}^0(\text{Cs}_{1.5}\text{HoCl}_{4.5})=0 \text{ at } 33$                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             | 570 000                                                                                          | $\Delta O_r$                                                                                                                                                                                                |  |  |
| $0.5Cs_{3}Er_{2}Cl_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30.0-0.0102 <i>T</i>                                                                                                                                                                                                       | 580-630                                                                                          | -3.7+0.0014T                                                                                                                                                                                                |  |  |
| $Cs_2ErCl_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -9.5-0.0072T                                                                                                                                                                                                                | 580-640                                                                                          | -0.3-0.0024T                                                                                                                                                                                                |  |  |
| $L-Cs_3ErCl_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -18.2 - 0.0073T                                                                                                                                                                                                             | 580-610                                                                                          | id. $\Delta G_{\rm r}^0$                                                                                                                                                                                    |  |  |
| 0.5Cs <sub>3</sub> Tm <sub>2</sub> Cl <sub>9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                     | -38.8-0.0024 <i>T</i>                                                                                                                                                                                                       | 620-650                                                                                          | -5.7+0.0017T                                                                                                                                                                                                |  |  |
| Cs <sub>2</sub> TmCl <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10.9-0.0038T                                                                                                                                                                                                               | 600-650                                                                                          | -1.7+0.0006T                                                                                                                                                                                                |  |  |
| $M-Cs_3TmCl_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -12.5-0.0162T                                                                                                                                                                                                               | 645-670                                                                                          | id. $\Delta G_r^0$<br>id. $\Delta G_r^0$                                                                                                                                                                    |  |  |
| L-Cs <sub>3</sub> TmCl <sub>6</sub><br>Fransform L →M-Cs-TmC                                                                                                                                                                                                                                                                                                                                                                                                           | -16.8-0.0095T<br>Cl <sub>6</sub> : $\Delta H_{tr}^{0}$ =4.3 kJ mol <sup>-1</sup> ; $\Delta S_{tr}^{0}$ =6.7 J K <sup>-1</sup>                                                                                               | 600-645<br>$^{1} \text{ mol}^{-1}$ : $T = 642 \text{ K}$ : (369°C: DTA                           |                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                             | 610–655                                                                                          |                                                                                                                                                                                                             |  |  |
| $0.5 Cs_3 Y_2 Cl_9$<br>$Cs_2 Y Cl_5$                                                                                                                                                                                                                                                                                                                                                                                                                                   | -28.7-0.0065T<br>$-16.1\pm0$                                                                                                                                                                                                | 610–655<br>600–640                                                                               | 1.2-0.0022T<br>-5.0+0.0033T                                                                                                                                                                                 |  |  |
| $L-Cs_3YCl_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -17.1-0.0100T                                                                                                                                                                                                               | 615-655                                                                                          | $\Delta G_r^0$                                                                                                                                                                                              |  |  |
| $\Delta G_{\rm syn}^0({\rm Cs}_{1.5}{\rm YCl}_{4.5})=0$ at 545                                                                                                                                                                                                                                                                                                                                                                                                         | 5 K (272°C)                                                                                                                                                                                                                 |                                                                                                  | Ĩ                                                                                                                                                                                                           |  |  |
| Rb-compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Delta G_{\rm r}^{\rm 0} = \Delta H_{\rm r}^{\rm 0} - \Delta S_{\rm r}^{\rm 0} T$                                                                                                                                          | Temperature range/K                                                                              | $\Delta G_{\rm syn}^0 = \Delta H_{\rm syn}^0 - \Delta S_{\rm syn}^0 T$                                                                                                                                      |  |  |
| 0.5RbTb <sub>2</sub> Cl <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                   | -18.2-0.0164 <i>T</i>                                                                                                                                                                                                       | 600–635                                                                                          | H: -10.6-0.0058 <i>T</i><br>L: -8.9-0.0085 <i>T</i>                                                                                                                                                         |  |  |
| H-Rb <sub>3</sub> TbCl <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                    | -27.1 - 0.0470T                                                                                                                                                                                                             | 685–715                                                                                          | id. $\Delta G_{\rm r}^0$<br>id. $\Delta G_{\rm r}^0$                                                                                                                                                        |  |  |
| L-Rb <sub>3</sub> TbCl <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                    | -37.7 - 0.0310T                                                                                                                                                                                                             | 590–680                                                                                          |                                                                                                                                                                                                             |  |  |
| Γransform. L→H-Rb <sub>3</sub> TbCl                                                                                                                                                                                                                                                                                                                                                                                                                                    | $I_6: \Delta H_{tr}^0 = 10.6 \text{ kJ mol}^{-1}; \Delta S_{tr}^0 = 16 \text{ J K}^{-1}$                                                                                                                                    | $^{1} \text{ mol}^{-1}$ ; $T_{\text{tr}}$ =663 K; (390°C; DTA                                    | =408°C)                                                                                                                                                                                                     |  |  |
| L-Rb <sub>3</sub> DyCl <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                    | -41.1-0.0292 <i>T</i>                                                                                                                                                                                                       | 560–680                                                                                          | id. $\Delta G_{\rm r}^0$                                                                                                                                                                                    |  |  |
| L-Rb <sub>3</sub> HoCl <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                    | -39.4-0.0371 <i>T</i>                                                                                                                                                                                                       | 600–690                                                                                          | id. $\Delta G_{\rm r}^0$                                                                                                                                                                                    |  |  |
| Rb <sub>2</sub> ErCl <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.0.0.0202T                                                                                                                                                                                                                | 5(0, (40                                                                                         | 5.9–0.0111 <i>T</i>                                                                                                                                                                                         |  |  |
| ICO2LICIS                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -21.0-0.0303T                                                                                                                                                                                                               | 560-640                                                                                          |                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -23.9-0.0017T                                                                                                                                                                                                               | 560–640<br>560–640                                                                               | 5.9–0.0111 <i>T</i> id. $\Delta G_{\rm r}^{\rm 0}$                                                                                                                                                          |  |  |
| L-Rb <sub>3</sub> ErCl <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                    | -23.9-0.0017T                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                             |  |  |
| ∠-Rb <sub>3</sub> ErCl <sub>6</sub><br>ΔG <sup>0</sup> <sub>syn</sub> (Rb <sub>2</sub> ErCl <sub>5</sub> )=0 at 535 I<br>Rb <sub>2</sub> TmCl <sub>5</sub>                                                                                                                                                                                                                                                                                                             | -23.9-0.0017 <i>T</i><br>K (262°C; DTA=348°C)<br>-31.3-0.0171 <i>T</i>                                                                                                                                                      | 560–640<br>610–670                                                                               | id. $\Delta G_r^0$<br>2.5–0.0068 <i>T</i>                                                                                                                                                                   |  |  |
| L-Rb <sub>3</sub> ErCl <sub>6</sub><br>ΔG <sup>0</sup> <sub>syn</sub> (Rb <sub>2</sub> ErCl <sub>5</sub> )=0 at 535 l<br>Rb <sub>2</sub> TmCl <sub>5</sub><br>L-Rb <sub>3</sub> TmCl <sub>6</sub>                                                                                                                                                                                                                                                                      | -23.9-0.0017 <i>T</i><br>K (262°C; DTA=348°C)<br>-31.3-0.0171 <i>T</i><br>-25.1±0                                                                                                                                           | 560-640                                                                                          | id. $\Delta G_{\rm r}^0$                                                                                                                                                                                    |  |  |
| L-Rb <sub>3</sub> ErCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> ErCl <sub>5</sub> )=0 at 535 I<br>Rb <sub>2</sub> TmCl <sub>5</sub><br>L-Rb <sub>3</sub> TmCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> TmCl <sub>5</sub> )=0 at 371                                                                                                                                                                                                          | -23.9-0.0017 <i>T</i><br>K (262°C; DTA=348°C)<br>-31.3-0.0171 <i>T</i><br>-25.1±0<br>K (98°C)                                                                                                                               | 560–640<br>610–670<br>610–650                                                                    | id. $\Delta G_r^0$<br>2.5–0.0068 <i>T</i><br>id. $\Delta G_r^0$                                                                                                                                             |  |  |
| L-Rb <sub>3</sub> ErCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> ErCl <sub>5</sub> )=0 at 535 I<br>Rb <sub>2</sub> TmCl <sub>5</sub><br>L-Rb <sub>3</sub> TmCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> TmCl <sub>5</sub> )=0 at 371<br>Rb <sub>2</sub> YbCl <sub>5</sub><br>L-Rb <sub>3</sub> YbCl <sub>6</sub>                                                                                                                              | -23.9-0.0017 <i>T</i><br>K (262°C; DTA=348°C)<br>-31.3-0.0171 <i>T</i><br>-25.1±0<br>K (98°C)<br>-30.6-0.0195 <i>T</i><br>-25.1±0                                                                                           | 560–640<br>610–670                                                                               | id. $\Delta G_r^0$<br>2.5–0.0068 <i>T</i>                                                                                                                                                                   |  |  |
| L-Rb <sub>3</sub> ErCl <sub>6</sub><br>$\Delta G_{syn}^0$ (Rb <sub>2</sub> ErCl <sub>5</sub> )=0 at 535 I<br>Rb <sub>2</sub> TmCl <sub>5</sub><br>L-Rb <sub>3</sub> TmCl <sub>6</sub><br>$\Delta G_{syn}^0$ (Rb <sub>2</sub> TmCl <sub>5</sub> )=0 at 371<br>Rb <sub>2</sub> YbCl <sub>5</sub><br>L-Rb <sub>3</sub> YbCl <sub>6</sub>                                                                                                                                  | -23.9-0.0017 <i>T</i><br>K (262°C; DTA=348°C)<br>-31.3-0.0171 <i>T</i><br>-25.1±0<br>K (98°C)<br>-30.6-0.0195 <i>T</i><br>-25.1±0                                                                                           | 560-640<br>610-670<br>610-650<br>620-690                                                         | id. $\Delta G_r^0$<br>2.5–0.0068 <i>T</i><br>id. $\Delta G_r^0$<br>2.8–0.0078 <i>T</i>                                                                                                                      |  |  |
| L-Rb <sub>3</sub> ErCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> ErCl <sub>5</sub> )=0 at 535 I<br>Rb <sub>2</sub> TmCl <sub>5</sub><br>L-Rb <sub>3</sub> TmCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> TmCl <sub>5</sub> )=0 at 371<br>Rb <sub>2</sub> YbCl <sub>5</sub><br>L-Rb <sub>3</sub> YbCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> YbCl <sub>5</sub> )=0 at 362                                                        | -23.9-0.0017 <i>T</i><br>K (262°C; DTA=348°C)<br>-31.3-0.0171 <i>T</i><br>-25.1±0<br>K (98°C)<br>-30.6-0.0195 <i>T</i><br>-25.1±0                                                                                           | 560-640<br>610-670<br>610-650<br>620-690                                                         | id. $\Delta G_r^0$<br>2.5–0.0068 <i>T</i><br>id. $\Delta G_r^0$<br>2.8–0.0078 <i>T</i>                                                                                                                      |  |  |
| L-Rb <sub>3</sub> ErCl <sub>6</sub><br>$\Delta G_{syn}^0$ (Rb <sub>2</sub> ErCl <sub>5</sub> )=0 at 535 I                                                                                                                                                                                                                                                                                                                                                              | -23.9-0.0017 <i>T</i><br>K (262°C; DTA=348°C)<br>-31.3-0.0171 <i>T</i><br>-25.1±0<br>K (98°C)<br>-30.6-0.0195 <i>T</i><br>-25.1±0<br>K (88°C)                                                                               | 560-640<br>610-670<br>610-650<br>620-690<br>620-690                                              | id. $\Delta G_r^0$<br>2.5–0.0068 <i>T</i><br>id. $\Delta G_r^0$<br>2.8–0.0078 <i>T</i><br>id. $\Delta G_r^0$                                                                                                |  |  |
| L-Rb <sub>3</sub> ErCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> ErCl <sub>5</sub> )=0 at 535 I<br>Rb <sub>2</sub> TmCl <sub>5</sub><br>L-Rb <sub>3</sub> TmCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> TmCl <sub>5</sub> )=0 at 371<br>Rb <sub>2</sub> YbCl <sub>5</sub><br>L-Rb <sub>3</sub> YbCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> YbCl <sub>5</sub> )=0 at 362<br>L-Rb <sub>3</sub> YCl <sub>6</sub><br>K-compounds   | -23.9-0.0017 <i>T</i><br>K (262°C; DTA=348°C)<br>-31.3-0.0171 <i>T</i><br>-25.1±0<br>K (98°C)<br>-30.6-0.0195 <i>T</i><br>-25.1±0<br>K (88°C)<br>-41.9-0.0322 <i>T</i>                                                      | 560-640<br>610-670<br>610-650<br>620-690<br>620-690<br>600-670                                   | id. $\Delta G_{r}^{0}$<br>2.5–0.0068 <i>T</i><br>id. $\Delta G_{r}^{0}$<br>2.8–0.0078 <i>T</i><br>id. $\Delta G_{r}^{0}$<br>id. $\Delta G_{r}^{0}$                                                          |  |  |
| L-Rb <sub>3</sub> ErCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> ErCl <sub>5</sub> )=0 at 535 I<br>Rb <sub>2</sub> TmCl <sub>5</sub><br>L-Rb <sub>3</sub> TmCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> TmCl <sub>5</sub> )=0 at 371<br>Rb <sub>2</sub> YbCl <sub>5</sub><br>L-Rb <sub>3</sub> YbCl <sub>6</sub><br>$\Delta G_{syn}^{0}$ (Rb <sub>2</sub> YbCl <sub>5</sub> )=0 at 362<br>L-Rb <sub>3</sub> YCl <sub>6</sub>                  | -23.9-0.0017T K (262°C; DTA=348°C)<br>$-31.3-0.0171T$ $-25.1\pm0$ K (98°C)<br>$-30.6-0.0195T$ $-25.1\pm0$ K (88°C)<br>K (88°C)<br>$-41.9-0.0322T$ $\Delta G_{r}^{0} = \Delta H_{r}^{0} - \Delta S_{r}^{0}T$                 | 560–640<br>610–670<br>610–650<br>620–690<br>620–690<br>600–670<br>Temperature range/K            | id. $\Delta G_r^0$<br>2.5–0.0068 <i>T</i><br>id. $\Delta G_r^0$<br>2.8–0.0078 <i>T</i><br>id. $\Delta G_r^0$<br>id. $\Delta G_r^0$<br>id. $\Delta G_r^0$<br>1.1–0.0146 <i>T</i><br>H: –31.5+0.0395 <i>T</i> |  |  |
| L-Rb <sub>3</sub> ErCl <sub>6</sub><br>$\Delta G_{syn}^{0}(Rb_{2}ErCl_{5})=0 \text{ at } 535 \text{ I}$ Rb <sub>2</sub> TmCl <sub>5</sub><br>L-Rb <sub>3</sub> TmCl <sub>6</sub><br>$\Delta G_{syn}^{0}(Rb_{2}TmCl_{5})=0 \text{ at } 371$ Rb <sub>2</sub> YbCl <sub>5</sub><br>L-Rb <sub>3</sub> YbCl <sub>6</sub><br>$\Delta G_{syn}^{0}(Rb_{2}YbCl_{5})=0 \text{ at } 362$ L-Rb <sub>3</sub> YCl <sub>6</sub><br>K-compounds<br>0.5KTb <sub>2</sub> Cl <sub>7</sub> | -23.9-0.0017T K (262°C; DTA=348°C)<br>$-31.3-0.0171T$ $-25.1\pm0$ K (98°C)<br>$-30.6-0.0195T$ $-25.1\pm0$ K (88°C)<br>$-41.9-0.0322T$ $\Delta G_{\rm r}^{0} = \Delta H_{\rm r}^{0} - \Delta S_{\rm r}^{0}T$ $-11.5-0.0162T$ | 560–640<br>610–670<br>610–650<br>620–690<br>620–690<br>600–670<br>Temperature range/K<br>520–670 | id. $\Delta G_{r}^{0}$<br>2.5–0.0068 <i>T</i><br>id. $\Delta G_{r}^{0}$<br>2.8–0.0078 <i>T</i><br>id. $\Delta G_{r}^{0}$<br>id. $\Delta G_{r}^{0}$<br>id. $\Delta G_{r}^{0}$<br>1.1–0.0146 <i>T</i>         |  |  |

| <b>Table 7</b> Enthalpies $\Delta H$ (in kJ mol <sup>-1</sup> ) and entropies $\Delta S$ (in J K <sup>-1</sup> mol <sup>-1</sup> ) determined by <i>e.m.f.</i> measurements ( | H – high-tempera- |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ture modification; L – low-temperature modification)                                                                                                                          | in mgn temperu    |

Transform. M $\rightarrow$ H-K<sub>3</sub>TbCl<sub>6</sub>:  $\Delta H_{tr}^{0}$ =8.1 kJ mol<sup>-1</sup>;  $\Delta S_{tr}^{0}$ =12.6 J K<sup>-1</sup> mol<sup>-1</sup>;  $T_{tr}$ =642 K; (369°C; DTA=367°C);  $\Delta G_{syn}^{0}$ (L-K<sub>3</sub>TbCl<sub>6</sub>)=0 at 395 K (122°C);  $\Delta G_{syn}^{0}$ (K<sub>0.5</sub>TbCl<sub>3.5</sub>)=0 at 79 K (-194°C)

 Table 7 Continued

| K-compounds                                                                                                                                     | $\Delta G_{\rm r}^{\rm 0} = \Delta H_{\rm r}^{\rm 0} - \Delta S_{\rm r}^{\rm 0} T$                     | Temperature range/K                                            | $\Delta G_{\rm syn}^{0} = \Delta H_{\rm syn}^{0} - \Delta S_{\rm syn}^{0} T$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|
| K <sub>2</sub> DyCl <sub>5</sub>                                                                                                                | -38.5+0.0099 <i>T</i>                                                                                  | 570–720                                                        | H: -29.3+0.0399 <i>T</i><br>M: -24.1+0.0318 <i>T</i>                         |
| H-K <sub>3</sub> DyCl <sub>6</sub>                                                                                                              | 23.2-0.0599T                                                                                           | 640-720                                                        | id. $\Delta G_{\rm r}^0$                                                     |
| M-K <sub>3</sub> DyCl <sub>6</sub>                                                                                                              | 14.5–0.0464 <i>T</i>                                                                                   | 570-640                                                        | id. $\Delta G_{\rm r}^{\rm io}$                                              |
| Transform. L $\rightarrow$ M-K <sub>3</sub> DyCl <sub>6</sub> : $\Delta$<br>$\Delta G^0_{syn}$ (M-K <sub>3</sub> DyCl <sub>6</sub> )=0 at 312 K | $H_{\rm tr}^{0}$ =8.7 kJ mol <sup>-1</sup> ; $\Delta S_{\rm tr}^{0}$ =13.5 J K <sup>-1</sup><br>(39°C) | $^{1}$ mol <sup>-1</sup> ; $T_{tr}$ =644 K; (371°C; DTA        | =373°C);                                                                     |
| K <sub>2</sub> HoCl <sub>5</sub>                                                                                                                | $-38.4 \pm 0.0110T$                                                                                    | 600–640                                                        | -22.2+0.0322T                                                                |
| M-K <sub>3</sub> HoCl <sub>6</sub>                                                                                                              | 11.4–0.0464 <i>T</i>                                                                                   | 600–640                                                        | id. $\Delta G_{\rm r}^0$                                                     |
| $\Delta G_{\text{syn}}^0$ (M-K <sub>3</sub> HoCl <sub>6</sub> )=0 at 246 K                                                                      | L (-27°C)                                                                                              |                                                                |                                                                              |
| M-K <sub>3</sub> ErCl <sub>6</sub>                                                                                                              | -31.8-0.0356 <i>T</i>                                                                                  |                                                                | id. $\Delta G_{\rm r}^0$                                                     |
| K <sub>2</sub> TmCl <sub>5</sub>                                                                                                                | -23.1-0.0177T                                                                                          | 610–670                                                        | H: -8.8-0.0071 <i>T</i><br>M: -4.6+0.0046 <i>T</i>                           |
| H-K <sub>3</sub> TmCl <sub>6</sub>                                                                                                              | -0.8 - 0.0294T                                                                                         | 660–680                                                        | id. $\Delta G_r^0$                                                           |
| M-K <sub>3</sub> TmCl <sub>6</sub>                                                                                                              | -7.3-0.0195 <i>T</i>                                                                                   | 610–660                                                        | id. $\Delta G_{ m r}^{ m b}$                                                 |
| Transform. $M \rightarrow H-K_3TmCl_6$ : $\Delta$                                                                                               | $\Delta H_{tr}^{0} = 6.5 \text{ kJ mol}^{-1}; \Delta S_{tr}^{0} = 9.9 \text{ J K}^{-1}$                | mol <sup>-1</sup> ; <i>T</i> <sub>tt</sub> =657 K; (384°C; DTA | =386°C)                                                                      |
| K <sub>2</sub> YbCl <sub>5</sub>                                                                                                                | -26.0-0.0167T                                                                                          | 580-635                                                        | H: -9.9+0.0111 <i>T</i><br>L: -5.2+0.0038 <i>T</i>                           |
| H-K <sub>3</sub> YbCl <sub>6</sub>                                                                                                              | -0.9-0.0296T                                                                                           | 650–680                                                        | id. $\Delta G_{\rm r}^0$                                                     |
| M-K <sub>3</sub> YbCl <sub>6</sub>                                                                                                              | -8.7 - 0.0175T                                                                                         | 590-650                                                        | id. $\Delta G_{\rm r}^{\rm 0}$                                               |
| Transform. $M \rightarrow H-K_3YbCl_6: \Delta$                                                                                                  | $H_{\rm tr}^{0}$ =7.8 kJ mol <sup>-1</sup> ; $\Delta S_{\rm tr}^{0}$ =12.1 J K <sup>-</sup>            | $^{1}$ mol <sup>-1</sup> ; $T_{tr}$ =650 K; (377°C; DTA        | а=392°С)                                                                     |
| K <sub>2</sub> YCl <sub>5</sub>                                                                                                                 | -43.1+0.0198 <i>T</i>                                                                                  | 605–645                                                        | H: -27.4+0.0411 <i>T</i><br>L: -23.4+0.0349 <i>T</i>                         |
| H-K <sub>3</sub> YCl <sub>6</sub>                                                                                                               | 16.9–0.0553 <i>T</i>                                                                                   | 650–680                                                        | id. $\Delta G_r^0$                                                           |
| $M-K_3YCl_6$                                                                                                                                    | 10.3–0.04497                                                                                           | 615–650                                                        | id. $\Delta G_r^0$                                                           |
|                                                                                                                                                 |                                                                                                        | 1                                                              | •                                                                            |

Transform. M $\rightarrow$ H-K<sub>3</sub>YCl<sub>6</sub>:  $\Delta G_{u}^{0}$ =6.6 kJ mol<sup>-1</sup>;  $\Delta S_{u}^{0}$ =10.4 J K<sup>-1</sup> mol<sup>-1</sup>;  $T_{u}$ =635 K; (362°C; DTA=377°C);  $\Delta G_{syn}^{0}$ (M-K<sub>3</sub>YCl<sub>6</sub>)=0 at 229 K (-44°C)

| Na-compounds                         | $\Delta G_{\rm r}^{\rm 0} = \Delta H_{\rm r}^{\rm 0} - \Delta S_{\rm r}^{\rm 0} T$ | Temperature range/K | $\Delta G_{\rm syn}^{\rm 0} = \Delta H_{\rm syn}^{\rm 0} - \Delta S_{\rm syn}^{\rm 0} T$ |
|--------------------------------------|------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------|
| 0.5NaTb <sub>2</sub> Cl <sub>7</sub> | 6.1–0.0213 <i>T</i>                                                                | 570-670             | 5.5–0.0107 <i>T</i>                                                                      |
| NaTbCl <sub>4</sub>                  | $-4.9\pm0$                                                                         | 310-410             | -2.7+0.0007T                                                                             |
| Na <sub>2</sub> TbCl <sub>5</sub>    | -1.6 - 0.0051T                                                                     | 290-320             | -4.3+0.0091T                                                                             |
| H-Na <sub>3</sub> TbCl <sub>6</sub>  | 7.1-0.0232T                                                                        | 290-400             | id. $\Delta G_{\rm r}^0$                                                                 |
| 0.5NaDy <sub>2</sub> Cl <sub>7</sub> | +6.4-0.0025T                                                                       | 570-670             | +5.8-0.0012T                                                                             |
| NaDyCl <sub>4</sub>                  | $-5.2\pm0$                                                                         | 570-670             | -4.9+0.0051T                                                                             |
| H-Na <sub>3</sub> DyCl <sub>6</sub>  | 3.6–0.0257 <i>T</i>                                                                | 580-670             | id. $\Delta G_{\rm r}^0$                                                                 |
| 0.5NaHo <sub>2</sub> Cl <sub>7</sub> | -3.7 - 0.0036T                                                                     | 580-650             | 0.9–0.0018 <i>T</i>                                                                      |
| L-NaHoCl <sub>4</sub>                | $-5.3\pm0$                                                                         | 570-650             | -5.0+0.0062T                                                                             |
| Na <sub>3</sub> HoCl <sub>6</sub>    | 3.8–0.0312 <i>T</i>                                                                | 570–630             | id. $\Delta G_{\rm r}^0$                                                                 |
| NaErCl <sub>4</sub>                  | -5.8 - 0.0074T                                                                     | 580-640             | -2.4+0.0019T                                                                             |
| Na <sub>3</sub> ErCl <sub>6</sub>    | -4.4-0.0204T                                                                       | 590-670             | id. $\Delta G_{\rm r}^0$                                                                 |
| Na <sub>3</sub> TmCl <sub>6</sub>    | -3.4-0.0214T                                                                       |                     | id. $\Delta G_{\rm r}^0$                                                                 |
| Na <sub>3</sub> YbCl <sub>6</sub>    | -5.8-0.0199 <i>T</i>                                                               |                     | id. $\Delta G_{\rm r}^{0}$                                                               |
| Na <sub>3</sub> LuCl <sub>6</sub>    | -8.2 - 0.0153T                                                                     |                     | id. $\Delta G_{\rm r}^0$                                                                 |
| 0.5NaY2Cl7                           | -3.9-0.0024T                                                                       | 590-620             | -0.6+0.0010T                                                                             |
| NaYCl <sub>4</sub>                   | -2.7-0.0045T                                                                       | 570-620             | -1.7+0.0005T                                                                             |
| Na <sub>3</sub> YCl <sub>6</sub>     | -2.3-0.0205T                                                                       | 560–680             | id. $\Delta G_{\rm r}^0$                                                                 |

-4569 kJ mol<sup>-1</sup>. Thus,  $\Delta H_{lat}^0$  (Cs<sub>3</sub>TbCl<sub>6</sub>)= 3(-640.6) -4476-73.5=-6471.3, all in kJ mol<sup>-1</sup>. That is, the measured  $\Delta H_f^0$ =-73.5 kJ mol<sup>-1</sup> contributes with only 1.1% to the total lattice enthalpy, mainly given by the binary chlorides. For a row of compounds with the same *A*, for instance Cs<sub>3</sub>LnCl<sub>6</sub>, it becomes more exothermic with decreasing radius *r*(Ln<sup>3+</sup>) and for a given *Ln* from Cs to Na compounds. Consequently,

the total values are not sensitive for small energetic effects, which are reflected better by the measured enthalpy differences.

At *T*=0 the entropy term in the Gibbs–Helmholtz equation is zero and stability is controlled by enthalpy alone. The lattice enthalpies depend on the fitting of the cations in the voids of the Cl<sup>-</sup> packing. Thus, with decreasing size of the Ln<sup>3+</sup> ion first the lattice enthalpy

decreases because the Ln–Cl distance becomes smaller until a 'critical radii relation' is reached; then a transition to a structure type with a smaller CN occurs. The radii of the  $Ln^{3+}$  ions [72] decrease from  $Ln^{3+}$  (103 pm) to  $Lu^{3+}$  (86 pm). This leads to a decreasing tendency of occupying interstices of the CN7 in the chloride packing in favour of an octahedral coordination.

Generally the  $LnCl_x$  polyhedra get smaller with decreasing distance Ln-Cl and thus also the Cl-Cl distances are shrinking. These shrinkages affect as well the coordination of the  $A^+$  ions. The CN in the main structure types are:

|                         | $Cs_3LnCl_6$ | $K_2PrCl_5$                       | $Cs_2DyCl_5$   |
|-------------------------|--------------|-----------------------------------|----------------|
| CN for Ln <sup>3+</sup> | 6            | 7                                 | 6              |
| CN for $A^+$            | 2.12+1.6     | 8                                 | 10/11          |
|                         | $KEr_2F_7$   | RbDy <sub>2</sub> Cl <sub>7</sub> | $Cs_3Tl_2Cl_9$ |
| CN for Ln <sup>3+</sup> | 8            | 7                                 | 6              |
| CN for $A^+$            | 9/11         | (10+2)                            | 12             |

From Cs to Na the tendency for formation of the CN6 of the alkali ions increases. For all groups of compounds the volumes of the unit cells diminish from La to Lu due to the diminishing ionic radii. For the same reason compounds of Rb form smaller unit cells compared with the Cs compounds of the same composition.

The (Gibbs) synreaction enthalpies,  $\Delta G_{syn}^0$ , describe the stabilities of given ternary chlorides related to their neighbour compounds in their phase diagrams, and due to their temperature dependence allow the calculation of the range of stability. As can be seen from the Gibbs–Helmholtz equation,  $\Delta G = \Delta H - T \Delta S$ ,  $\Delta G$  is negative if  $\Delta H$  is negative and the entropy term becomes negligible. That is the common assumption in solid-state chemistry. However, as we have seen the  $\Delta H^0$  values are relatively small compared with the total lattice energies. Therefore, entropy can also be of importance for the

sign of  $\Delta G$ . For a  $\Delta S_{syn}^0$  of +10 J K<sup>-1</sup> mol<sup>-1</sup>, e.g., at ambient temperature the term  $-T\Delta S^0$  is about -3 kJ mol<sup>-1</sup> and can compensate a loss in lattice energy of the same magnitude. The compound then is stable only up from ambient temperature. Otherwise, a loss in entropy makes the  $-T\Delta S$  term positive, and a compound stable at 0 K will decompose to its neighbours at  $T = \Delta H_{syn}^0 / \Delta S_{syn}^0$ . One can observe these relations by starting the temperature scale of phase diagrams at 0 K (Fig. 8). The expression 'high-temperature phase' has now not its usual meaning.

The basis for these considerations is the linear temperature dependence of  $\Delta G$ . Then  $\Delta H$  and  $\Delta S$  are constants. It follows that  $c_p=c_p(A_nLnCl_{3+n})-nc_p(ACl)$  $+c_p(LnCl_3)=0$ . By measurements of  $c_p$  with ternary lanthanum chlorides [86] it is proven that this condition is fulfilled down to 200 K. It can be assumed that the further change of  $c_p$  is at least monotonous, so that our considerations about stability ranges are correct at least qualitatively.

#### Compounds A<sub>3</sub>LnCl<sub>6</sub>

The compounds  $A_3LnCl_6$  form the most homogenous group of ternary lanthanide chlorides. They all belong to the elpasolite-structure family with isolated  $[LnCl_6]^{3-}$  octahedra, which are held together by the  $A^+$  ions. Cs and Rb compounds exist with all lanthanides; for *Ln*=La to Gd a survey is given in [87]. The structural and energetic relations of the K compounds with *Ln*=Ce–Yb have been described recently [7]. The La compound does not exist. Sodium compounds Na<sub>3</sub>LnCl<sub>6</sub> exist with *Ln*=Eu to Lu; they will be treated later together with the other families of Na compounds.

Compounds A<sub>3</sub>LnCl<sub>6</sub> with *A*=Cs, Rb, K have the highest melting points among the compounds of their respective systems. Their melting points first increase

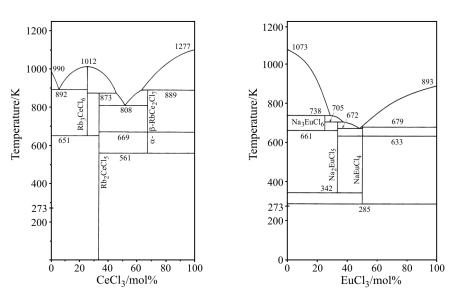



Fig. 8 Systems RbCl/CeCl3 and NaCl/EuCl3 up from 0 K

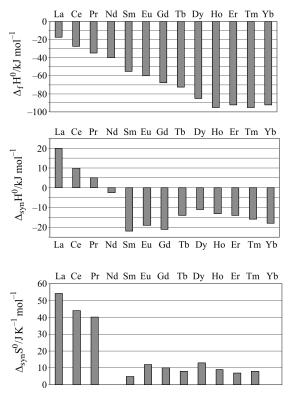



Fig. 9 Thermodynamic data for compounds Cs<sub>3</sub>LnCl<sub>6</sub> (formation: 3CsCl+LnCl<sub>3</sub>; synreaction: CsCl+Cs<sub>2</sub>LnCl<sub>5</sub>)

distinctively from 1053 K (Cs<sub>3</sub>LaCl<sub>6</sub>) to 1153 K (Cs<sub>3</sub>TbCl<sub>6</sub>), less in the second half of the lanthanides (*m.p.* (Cs<sub>3</sub>YbCl<sub>6</sub>)=1171 K). The same tendency exists for the enthalpies of formation from (3ACl+LaCl<sub>3</sub>), which are the differences in the lattice enthalpies (Fig. 9). According to the electrostatic binding model, for the compounds of Cs and K, Blachnik and Selle already in 1979 found an almost linear variation of their lattice energies with decreasing  $r(\text{Ln}^{3+})$ , derived from measured solution enthalpies [24]. That the  $\Delta H_{\rm f}^0$  values for the last lanthanides are nearly constant must be attributed to the fact that here the CN6 is just fitting to their ionic radii.

Thus, the binary LnCl<sub>3</sub> compounds from Dy to Lu crystallize in the AlCl<sub>3</sub>-type with LnCl<sub>6/2</sub> octahedra linked together while the CN of the Ln<sup>3+</sup> ions in the UCl<sub>3</sub>-type (*Ln*=La–Gd) is nine. For the first members in the rows of compounds Rb<sub>3</sub>LnCl<sub>6</sub> (*Ln*=La, Ce) and K<sub>3</sub>LnCl<sub>6</sub> (*Ln*=La–Nd) the formation from ACl and LnCl<sub>3</sub> is endothermic. The reason is that Rb<sup>+</sup> and K<sup>+</sup> are too small for their CN (2×8 and 1×10) in the Cs<sub>3</sub>BiCl<sub>6</sub> or K<sub>3</sub>MoCl<sub>6</sub>-type structure. If the chloride packing shrinks with decreasing *r*(Ln<sup>3+</sup>) the situation gets more and more favourable for these smaller alkali-metal ions.

These relations are partially reflected by the variation in the  $\Delta V_m$  values. For the compounds from La to Dy they are positive. The increase is small for the Cs compounds (4 cm<sup>3</sup> mol<sup>-1</sup> to -1) and increases over the Rb (16 cm<sup>3</sup> mol<sup>-1</sup> to 9) to the K-compounds (20 cm<sup>3</sup> to 10). For *Ln*=Ho to Lu the binary chlorides crystallize with a layer structure, the AlCl<sub>3</sub>-type; the volume decreases with the formation of the ternary chloride.

The measured enthalpies for the synreaction ACl + $A_2LnCl_5=A_3LnCl_6$  reveal that there are two groups:

- Positive  $\Delta H_{syn}^0$  values are found for Cs compounds from La to Nd, for Rb compounds from La to Gd and for K compounds from Ce to Ho. These compounds are formed in a synreaction from ACl and the pentachloro compounds with the K<sub>2</sub>PrCl<sub>5</sub>-type structure, in which monocapped trigonal prisms are fourfold linked to  $(LnCl_3Cl_{4/2})^{2-}$  chains. The transition from this rigid coordination to the isolated (LnCl<sub>6</sub>)<sup>3-</sup> octahedra produces a gain in entropy between 40 and 55 J  $K^{-1}$  mol<sup>-1</sup>. The endothermic  $\Delta H_{\rm syn}^0$ , caused by the transition from CN7 to CN6 for the ions is compensated by a high  $T\Delta S$  term, the compounds being stable if  $T\Delta S_{syn} > \Delta H_{syn}^0$ . The temperatures in which these compounds are stable, decrease with decreasing  $r(Ln^{3+})$  and therefore increasing stability of the A<sub>3</sub>LnCl<sub>6</sub> compounds.
- All other hexachloro complexes have negative (exothermic)  $\Delta H_{syn}^0$  values. They should be stable at 0 K.

As reported in the chapter 'Crystal structures' all 3:1-compounds have cubic high-temperature-modifications. For several compounds we were able to determine transition enthalpies  $(\Delta H_w^0)$ , and entropies  $(\Delta S_w^0)$ , by *e.m.f.* measurements. They are in the range 6 to 10 kJ mol<sup>-1</sup> and 7 and 16 J K<sup>-1</sup> mol<sup>-1</sup>, respectively. The modifications of Cs<sub>3</sub>LnCl<sub>6</sub> compounds in Pbcm, crystallizing from aqueous solution (Table 5), exist only if they are stable at ambient temperature, that is, it begins with neodymium. Cs<sub>3</sub>NdCl<sub>6</sub> (Pbcm) is formed only from hot solutions (>60°C). Below this temperature a hydrate is formed as with solutions of lanthanum, cerium and praseodymium.

#### Compounds A2LnCl5

All 2:1-compounds with A=Cs, Rb, K are formed from their binary parent compounds with exothermic lattice enthalpies. They exist in three structure types, the K<sub>2</sub>PrCl<sub>5</sub>-type with CN(Ln<sup>3+</sup>)=7 and CN(A<sup>+</sup>)=8, the Cs<sub>2</sub>DyCl<sub>5</sub>-type with CN(Ln<sup>3+</sup>)=6 and CN(A<sup>+</sup>)=7 and a third type with three members K<sub>2</sub>LnCl<sub>5</sub> (*Ln*=Er, Tm, Yb) of still unknown structure.

The K<sub>2</sub>PrCl<sub>5</sub>-type exists from A<sub>2</sub>LaCl<sub>5</sub> to Cs<sub>2</sub>NdCl<sub>5</sub>, Rb<sub>2</sub>GdCl<sub>5</sub> and K<sub>2</sub>HoCl<sub>5</sub>, respectively. Sodium compounds with this structure exist from Na<sub>2</sub>SmCl<sub>5</sub> to Na<sub>2</sub>TbCl<sub>5</sub>. They are formed from NaCl and LnCl<sub>3</sub> with endothermic enthalpies (+14.4 to  $\sim 0$  kJ mol<sup>-1</sup>). All Cs, Rb and K compounds have distinctly exothermic synreaction enthalpies. They are stable at 0 K. The Cs compounds and Rb<sub>2</sub>EuCl<sub>5</sub>, Rb<sub>2</sub>GdCl<sub>5</sub>, K<sub>2</sub>HoCl<sub>5</sub> decompose in the solid-state. That is, their synreaction must occur with such a high loss in entropy, that the now positive  $-T\Delta S$  term at  $T_D$  compensates the exothermic  $\Delta H_{syn}^0$ . The other Rb compounds and the compounds K<sub>2</sub>LnCl<sub>5</sub> with the K<sub>2</sub>PrCl<sub>5</sub>-structure melt incongruently; only the compounds with *Ln*= La–Nd have congruent melting points. The highest temperatures of existence decrease with decreasing radii of the Ln<sup>3+</sup> ions. The reason is that the CN=7 becomes increasingly too high for the lanthanide ions.

A new structure family, the Cs<sub>2</sub>DyCl<sub>5</sub>-type, now becomes stable, for the Cs compounds starting with Cs<sub>2</sub>SmCl<sub>5</sub>. With rubidium the Tb and Dy compounds, with potassium an Er compound do not exist. These borderlines of existence for the K<sub>2</sub>PrCl<sub>5</sub>-type compound are the same as for the positive  $\Delta H_{syn}^0$  values of the compounds A<sub>3</sub>LnCl<sub>6</sub>.

In the K<sub>2</sub>PrCl<sub>5</sub>-type the packing is very dense because of fourfold bound trigonal prisms. Thus, a gain in lattice energy is connected with the synreaction from the A<sub>3</sub>LnCl<sub>6</sub> neighbours with their isolated octahedra. On the other hand a high loss in entropy exists. The coordination in the Cs<sub>2</sub>DyCl<sub>5</sub>-structure is less rigid, the octahedra are twofold connected. Thus, the synreaction entropy is smaller (~10 J K<sup>-1</sup> mol<sup>-1</sup> for the Cs compounds), the synreaction enthalpies are exothermic and a slight increase of the molar volumes compared with 2ACl+LnCl<sub>3</sub> exists. However, the formation from the chlorides with layer structure occurs with a decrease in  $\Delta V_m$ . The formation of the K<sub>2</sub>PrCl<sub>5</sub>-type compounds is accompanied by a loss in  $V_m$ .

For the Cs compounds the transition from  $CN(Ln^{3+})=7$  to 6 occurs very early in the series of *Ln*. The increase of the CN from 8 to 11 for the large Cs<sup>+</sup> is well tolerated. With the smaller Rb<sup>+</sup> the K<sub>2</sub>PrCl<sub>5</sub>-type exists up to Rb<sub>2</sub>GdCl<sub>5</sub>. The  $\Delta H_f^0$  values get more exothermic from La to Eu (-33.3 to -61.1 kJ mol<sup>-1</sup>), but the Gd<sup>3+</sup> ion seems already to be too small for the CN7, the enthalpy is now only -53.7 kJ mol<sup>-1</sup>. Beginning with Ho<sup>3+</sup> the octahedral coordination is so favourable, that now a CN(A<sup>+</sup>)=11 is possible. However, their synreaction enthalpies are positive, they are high temperature compounds, existing above 687 K (Rb<sub>2</sub>HoCl<sub>5</sub>) or 362 K (Rb<sub>2</sub>YbCl<sub>5</sub>). The 2:1-compounds of the K<sub>2</sub>PrCl<sub>5</sub>-type have exothermic synreaction enthalpies and are stable at 0 K.

Considering the synreaction enthalpies it must be taken into account that the structure of the neighbour compounds may change, mainly for the Cs compounds. For Cs<sub>2</sub>LaCl<sub>5</sub> with CN=7 for Ln<sup>3+</sup> ion, they are Cs<sub>3</sub>LaCl<sub>6</sub> and CsLa<sub>2</sub>Cl<sub>7</sub> (KEr<sub>2</sub>F<sub>7</sub>-type) with coordination numbers 6 and 8 for La<sup>3+</sup>, respectively. Beginning with Cs<sub>2</sub>SmCl<sub>5</sub>, with CN(Sm<sup>3+</sup>)=6, they are Cs<sub>3</sub>SmCl<sub>6</sub> and CsSm<sub>2</sub>Cl<sub>7</sub> (RbDy<sub>2</sub>Cl<sub>7</sub>-type) with CN=7 for  $Ln^{3+}$ . From Ho to Yb the neighbours are  $Cs_3LnCl_6$  and  $CsLn_2Cl_7$  both with CN=6 for  $Ln^{3+}$ .

#### Compounds ALn<sub>2</sub>Cl<sub>7</sub>

The ALn<sub>2</sub>Cl<sub>7</sub> compounds with A=Cs and Rb of the first four lanthanides La to Nd, crystallize in the KEr<sub>2</sub>Cl<sub>7</sub>-type where CN(Ln<sup>3+</sup>)=8 and the CN(A<sup>+</sup>) is 9 and 11. The formation from ACl+2LnCl<sub>3</sub> is exothermic, ~-10 kJ mol<sup>-1</sup> for A=Cs and only between -2 and -5 kJ mol<sup>-1</sup> for the Rb compounds. The larger Cs<sup>+</sup> fits better the 9/11 coordination than the Rb<sup>+</sup> ion. With the smaller K<sup>+</sup> only one compound exists, KNd<sub>2</sub>Cl<sub>7</sub> with a small endothermic change in lattice energy.

The synreaction enthalpies of the Cs compounds are not very different from zero, +1.6 kJ mol<sup>-1</sup> for CsLa<sub>2</sub>Cl<sub>7</sub>, and -3.1 kJ mol<sup>-1</sup> for CsNd<sub>2</sub>Cl<sub>7</sub>. For the compounds of the other alkali-metals they are distinctly positive, +6.5 kJ mol<sup>-1</sup> for RbNd<sub>2</sub>Cl<sub>7</sub> and +11.5 kJ mol<sup>-1</sup> for KNd<sub>2</sub>Cl<sub>7</sub>. These compounds should exist only at temperatures higher than 0 K. Because *e.m.f.* measurements for these Ln-rich compounds could not be performed, the formation temperatures could not be calculated. With DTA, for KNd<sub>2</sub>Cl<sub>7</sub> a stability range at 766–783 K was determined.

From Sm to Yb all compounds with Cs, Rb, K exist, crystallizing with the structures of RbDy<sub>2</sub>Cl<sub>7</sub> or KDy<sub>2</sub>Cl<sub>7</sub>. In both very similar structures the CN are 7 for Ln<sup>3+</sup> and 10+2 for the A<sup>+</sup> ions. All compounds are formed from ACl+2LnCl<sub>3</sub> exothermically. The synreaction enthalpies are exothermic for Cs and Rb compounds and K compounds with *Ln*=Dy to Yb. They are stable at 0 K. The other K compounds exist only at temperatures >0 K. Sodium compounds NaLn<sub>2</sub>Cl<sub>7</sub> exist with *Ln*=Gd to Ho. The  $\Delta H_f^0$  values are positive for compounds with Gd, Tb and Dy, slightly negative for the Ho compound; all  $\Delta H_{syn}^0$  values are positive. It must be pointed out that in several systems high-temperature modifications exist with unknown structures.

#### Enneachlorides

Enneachlorides  $Cs_3Ln_2Cl_9$  were found in the systems with Ln=Ho to Lu. The existence of a  $K_3Yb_2CL_9$  is unsure. The  $Cs_3Tl_2Cl_9$  structure is nearly related to that of perovskite with CN6 for the  $Ln^{3+}$  ions and 12 for the  $A^+$  ions. The formation enthalpies from  $3CsCl+2LnCl_3$  are strongly negative (~-70 kJ mol<sup>-1</sup> for  $Cs_{1.5}LnCl_{4.5}$ ), comparable with those of the 2:1 compounds with the same Ln. The enthalpies of the synreactions from  $Cs_2LnCl_5$  and  $Cs_{0.5}LnCl_{3.5}$  are slightly negative with the exception of  $Cs_3Ho_2Cl_9$ which is stable at >330 K. It can be concluded that enneachlorides exist, if the octahedral voids in the  $Cl^$ packing suit the  $Ln^{3+}$  ions but only with the large  $Cs^+$ ion being surrounded by  $12Cl^-$  ions.

## Sodium compounds

The systems NaCl/LnCl<sub>3</sub> with Ln=La to Sm are dominated by solid solutions between LnCl<sub>3</sub> and NaCl up to the composition Na<sub>3</sub>Ln<sub>5</sub>Cl<sub>18</sub>. As explained in [1] the  $r(Na^+)$ =102 pm is of a comparable size with the radii of the first lanthanide ions, for instance  $r(Ce^{3+})$ =103 pm. The phase A<sub>3</sub>Ln<sub>5</sub>Cl<sub>18</sub>, which also exists with A=K for Ln=La and Ce, can be derived from (LnCl<sub>3</sub>)<sub>6</sub>=Ln<sub>6</sub>Cl<sub>18</sub> by the substitution of one Ln<sup>3+</sup> ion by three A<sup>+</sup> ions. The miscibility ranges diminish with decreasing size of the Ln<sup>3+</sup> ions; with Eu<sup>3+</sup> this phase no longer exists. The formation enthalpies are positive (~6 kJ mol<sup>-1</sup>), compensated by entropies of ~15 J K<sup>-1</sup> mol<sup>-1</sup> for Na<sub>0.6</sub>LnCl<sub>3.6</sub>.

From Sm to Tb the existing compounds are with the composition  $Na_2LnCl_5$  and from Gd to Ho additional existing compounds are with the composition  $NaLn_2Cl_7$ . They crystallize with the same structures as the potassium compounds and thus the same considerations are valid.

Another situation is found for the compounds Na<sub>3</sub>LnCl<sub>6</sub> with *Ln*=Eu to Lu. For them the monoclinic cryolite-type is formed, from Eu to Dy as a high-temperature modification. The low-temperature modifications crystallize according to Meyer with a trigonal stuffed LiSbF<sub>6</sub>-structure. Both structure types appear with CN6 for both cations. The cryolite-structure is stable above 666 K for Na<sub>3</sub>EuCl<sub>6</sub> and 538 K for Na<sub>3</sub>GdCl<sub>6</sub>. Their trigonal modifications can be obtained only by quenching and only as metastable phases, as found with e.m.f. measurements. For the Tb and Dy compounds the phase transitions are reversible, at 426 and ~390 K (120°C), respectively. Beginning with Na<sub>3</sub>HoCl<sub>6</sub> the cryolite-type is stable at ambient temperature. The stability borders to low temperatures decrease from 388°C (Eu) to  $\sim 120^{\circ}$ C (Dy). Thus, it may be speculated that for Ho and the following lanthanides the trigonal phase might be formed at temperatures below ambient temperature; but no experimental evidence exists.

Beginning with Na<sub>3</sub>ErCl<sub>6</sub> the compounds have exothermic  $\Delta H_{\rm f}^0$  and  $\Delta H_{\rm syn}^0$  values. For Na<sub>3</sub>HoCl<sub>6</sub> the formation enthalpy is negative, but  $\Delta H_{\rm syn}^0$  is positive with +2.8 kJ mol<sup>-1</sup>; this compound does not exist at 0 K but is stable >122 K. The formation enthalpies

| Table & Soului                    | n compou | nus   |                  |     |     |     |    |    |    |    |
|-----------------------------------|----------|-------|------------------|-----|-----|-----|----|----|----|----|
| Compound                          | Sm       | Eu    | Gd               | Tb  | Dy  | Но  | Er | Tm | Yb | Lu |
| Na <sub>3</sub> LnCl <sub>6</sub> | _        | ●/Θ   | $\bullet/\Theta$ | ●/O | •/0 | •   | •  | ٠  | ٠  | ٠  |
| Na <sub>2</sub> LnCl <sub>5</sub> | +        | +     | +                | +   | _   | _   | _  | _  | _  | _  |
| NaLnCl <sub>4</sub>               | _        | (X/?) | (?/X)            | Х   | Х   | ●/X | •  | •  |    |    |
| $NaLn_2Cl_7$                      | _        | _     | (+)              | +   | +   | (+) | _  | _  | _  | _  |

 Table 8 Sodium compounds

of the trigonal modifications from  $3NaCl + LnCl_3$  and their synreaction enthalpies are endothermic, and  $Na_3DyCl_6$  is accepted. The transition enthalpy to the high-temperature modifications with the cryolite-structure is about +5 kJ mol<sup>-1</sup>.

Unique for the ternary lanthanide chlorides with sodium are compounds with the composition NaLnCl<sub>4</sub>. From NaEuCl<sub>4</sub> to L-NaHoCl<sub>4</sub> they have the triclinic NaGdCl<sub>4</sub>-structure with CN7 for both cations. Beginning with H-NaHoCl<sub>4</sub> two near related structure types exist with CN6 for both cations, resulted from the shrinkage of the  $r(Ln^{3+})$ : the  $\alpha$ -NaWO<sub>4</sub>-type for H-NaHoCl<sub>4</sub> and the compounds with Ln=Er and Tm, and the NaLuCl<sub>4</sub>-type for Ln=Yb, Lu.

The energetic relations in the systems NaCl/EuCl<sub>3</sub> and NaCl/GdCl<sub>3</sub> are similar. All compounds in the systems are formed from NaCl and LnCl3 with endothermic enthalpies. For the EuCl<sub>3</sub> system all necessary energies could be measured, so that we could construct the system up from 0 K (Fig. 8). As the figure demonstrates no compound is stable at 0 K. The largest stability range has NaEuCl<sub>4</sub> with a formation temperature of 285 K. Its formation reaction NaCl+EuCl<sub>3</sub>=NaEuCl<sub>4</sub> is the synreaction too. The relations in the system with GdCl<sub>3</sub> are analogous. For the next two systems (Ln=Tb and Dy) no concrete interpretations can be given, because the necessary energy values are too close to  $\pm 0$ . Again all Tb compounds have endothermic  $\Delta H_{f}^{0}$  values. For dysprosium no 2:1-compound exists, but as with Tb the compound NaLn<sub>2</sub>Cl<sub>7</sub> exists. The  $\Delta H_{f}^{0}$  (NaDyCl<sub>4</sub>) has become slightly negative. The system NaCl/HoCl<sub>3</sub> is the last, containing compounds with CN higher than 6 in NaHo<sub>2</sub>Cl<sub>7</sub> and L-NaHoCl<sub>4</sub>. The transition to H-NaHoCl<sub>4</sub> occurs at 647 K. The formation enthalpies for all compounds are negative, but  $\Delta H_{syn}^0$  is exothermic only for NaHoCl<sub>4</sub> which is stable at 0 K.

The system NaCl/ErCl<sub>3</sub> is the first to contain only two compounds, Na<sub>3</sub>ErCl<sub>6</sub> and NaErCl<sub>4</sub>, both with octahedral surroundings for Er. The formation and reaction enthalpies are both exothermic. These findings are also valid for the last three systems with Ln=Tm, Yb, Lu; only  $\Delta H_{syn}^0$  for NaLuCl<sub>4</sub> is slightly endothermic with +1.9 kJ mol<sup>-1</sup>. A summary of these relations is given in Table 8.

Na<sub>3</sub>LnCl<sub>6</sub>:  $\bullet$  – cryolite-type, O – stuffed LiSbF<sub>6</sub>-type,  $\Theta$  – metastable; Na<sub>2</sub>LnCl<sub>5</sub>: + – K<sub>2</sub>PrCl<sub>5</sub>-type; NaLnCl<sub>4</sub>: X – NaGdCl<sub>4</sub>-type;

 $\bullet - \alpha - NaWO_4 - type; \square - NaLuCl_4 - type; ? - unknown structure; NaLn_2Cl_7; + - KDy_2Cl_7 - type; + - unknown structure = 0.000 + 0.000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.00000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.00000 + 0.0000 + 0.00000 + 0.0000 + 0.00000 + 0.0000 + 0.00000 +$ 

## Conclusions

#### Synopsis of the results

As discussed in the chapter about thermodynamics and structure the existence of ternary chlorides with their special structures is determined by the relative sizes of the ions  $\text{Ln}^{3+}$  and  $\text{A}^+$ . These range for the lanthanide ions from  $r(\text{La}^{3+})=103$  pm to  $r(\text{Lu}^{3+})=86$  pm. The alkali-metal ions K<sup>+</sup> to Cs<sup>+</sup> are larger,  $r(\text{K}^+)=138$  pm. They occupy interstices in the chloride packing with coordination numbers eight to eleven. The sodium ion with 102 pm is of comparable size with the largest lanthanide ions and somewhat larger than the others.

The lattices of compounds for which the number of chloride ions per formula unit is smaller than the  $CN(Ln^{3+})$  have chloride skeletons of linked  $LnCl_x$  polyhedra. The polyhedra are antiprisms (CN=8), monocapped trigonal prisms (CN=7), and corner- or edge-linked octahedra (Cs<sub>2</sub>DyCl<sub>5</sub>- or NaLnCl<sub>4</sub>-type). In the hexachloro compounds A<sub>3</sub>LnCl<sub>6</sub> the number of chloride ions is equal to the  $CN(Ln^{3+})$ , isolated (LnCl<sub>6</sub>)<sup>3-</sup> octahedra in elpasolite/perovskite-related structure types exist. Related to the perovskites are the ennea-chlorides Cs<sub>3</sub>Ln<sub>2</sub>Cl<sub>9</sub> consisting of face-sharing double octahedra (Ln<sub>2</sub>Cl<sub>9</sub>)<sup>3-</sup>, held together by the Cs<sup>+</sup> ions.

Most ternary chlorides are formed with exothermic enthalpies  $\Delta H_{\rm f}^0$  from their binary parent compounds ACl and LnCl<sub>3</sub>. Their lattices are energetically more favourable than those of mixtures *n*ACl+LnCl<sub>3</sub>. However, the existence of a ternary chloride at a given temperature depends on its stability relative to that of its neighbours in the system, namely,  $\Delta G_{\rm syn}^0$  must be negative. On discussing such synreaction energies, when going from one lanthanide element to another, one has to consider that also the change in the energetic properties of the neighbour compounds may have an influence on the system. At 0 K, when  $\Delta G = \Delta H$ , a compound is stable if  $\Delta H_{syn}^0$  is exothermic where its stability arises only from lattice energy effects. That is true for all the compounds shown in Table 9, the indices of which are not in brackets. One can recognize clearly that both the  $r(\text{Ln}^{3+})$  and the  $r(\text{A}^+)$  are of significant influence for the existence of a compound in a special structure.

The stability at 0 K of the elpasolite-like compounds  $A_3LnCl_6$ , begins with Sm for A=Cs, with Tb for Rb and with Er for K. Hexachloro compounds with the larger  $Ln^{3+}$  are not stable at T=0 K because these ions are too large for octahedral coordination. They are formed from their neighbours ACl and A<sub>2</sub>LnCl<sub>5</sub> with endothermic enthalpy, which must be compensated by a sufficiently high gain in entropy at the formation temperature. For instance, Rb<sub>3</sub>LaCl<sub>6</sub> is formed from its two neighbours with  $\Delta H_r^0$  of nearly +50 kJ mol<sup>-1</sup>, which is compensated at 444°C by a gain in entropy of 72 J  $K^{-1}$  mol<sup>-1</sup>. An explanation for this high entropy might be based on the fact that a compound with isolated octahedra with the freedom of oscillation, is formed from two compounds with rigidly linked octahedra.

There are two other groups of compounds stabilized by an entropy gain, which can be explained by a statistical model. These are  $A_3Ln_5Cl_{18}$ , where three  $A^+$  ions are statistically distributed over 1/6 of the  $Ln^{3+}$  sites, and  $Cs_4LnCl_7$ , with a seventh  $Cl^-$  ion statistically integrated in the chloride skeleton. For other groups of compounds the positive reaction enthalpy, and therefore the necessary gain in entropy, is smaller. For Na-compounds the energetic effects are often so small that their synreaction enthalpies are not significantly different from zero.

Comprehending the results one will recognize that  $\sim$ 70% of the ternary lanthanide chlorides are stable at 0 K, so that their existence can be discussed with the

| Compound<br>ALn <sub>2</sub> Cl <sub>7</sub>           | La         | Ce       | Pr     | Nd                    | Sm                                 | Eu     | Gd  | Tb  | Dy | Но  | Er | Tm | Yb | Lu  |
|--------------------------------------------------------|------------|----------|--------|-----------------------|------------------------------------|--------|-----|-----|----|-----|----|----|----|-----|
| Cs                                                     | •          | •        | •      | ٠                     |                                    |        |     |     |    |     |    |    |    |     |
| Rb                                                     |            |          |        | (●)                   |                                    |        |     |     |    |     |    |    |    | ?   |
| Κ                                                      | _          | _        | _      | (●)                   |                                    |        |     |     |    |     |    |    |    | ?   |
| Na                                                     | _          | _        | _      | _                     | _                                  | _      | (+) |     |    | (+) | _  | _  | _  | _   |
| $\bullet - KEr_2$                                      | F7-type (0 | CN=8), ∎ | - RbDy | 2Cl <sub>7</sub> /KDy | <sub>2</sub> Cl <sub>7</sub> -type | (CN=7) |     |     |    |     |    |    |    |     |
| $\begin{array}{c} Compound \\ A_2 Ln Cl_5 \end{array}$ | La         | Ce       | Pr     | Nd                    | Sm                                 | Eu     | Gd  | Tb  | Dy | Но  | Er | Tm | Yb | Lu  |
| Cs                                                     | •          | •        | •      | •                     |                                    |        |     |     |    |     |    |    |    |     |
| Rb                                                     | •          | •        | ٠      | ٠                     | •                                  | •      | •   | _   | _  |     |    |    |    | (■) |
| Κ                                                      | •          | •        | ٠      | •                     | •                                  | •      | •   | •   | •  | •   | _  | ?  | ?  | ?   |
| Na                                                     | _          | _        | _      | _                     | (●)                                | (●)    | (●) | (•) | _  | _   | _  | _  | _  | _   |

 Table 9 Ternary lanthanide chlorides ALn<sub>2</sub>Cl<sub>7</sub> and A<sub>2</sub>LnCl<sub>5</sub>

●  $-K_2$ PrCl<sub>5</sub>-type (CN=7), ■  $-Cs_2$ DyCl<sub>5</sub>-type (CN=6)

usual tools for lattice energies. The rest are 'high-temperature' compounds relative to 0 K. For them the entropy term  $-T\Delta S$  is of co-decisive importance. That is possible because formation and synreaction energies are very small compared with the total lattice energies of the ternary chlorides (~4000 kJ mol<sup>-1</sup>). That situation is similar to a discussion on the existence of hills in the tableland of Tibet!

#### **Open** issues

The main future work for finding an explanation for the existence of ternary lanthanide chlorides should be to determine their absolute entropies by measuring heat capacities  $c_p$  down to 0 K. That is, we have to explain how energy is dissipated over the lattices of the compounds, when heated in their range of existence.

Beside this there are other tasks of more limited importance:

- to elucidate the systems ACl/LuCl<sub>3</sub> (*A*=Cs, Rb, K) with the normally applied methods
- to determine the structures of the compounds K<sub>2</sub>LnCl<sub>5</sub> with *Ln*=Tm, Yb, Lu
- to determine the structure of at least one compound of the KEr<sub>2</sub>F<sub>7</sub> group by single crystal methods
- to determine the structures of the H-modified compounds ALn<sub>2</sub>Cl<sub>7</sub>
- to clarify the dimorphism of the compounds NaGdCl<sub>4</sub> and NaEuCl<sub>4</sub>
- to prove the existence of the compounds NaGd<sub>2</sub>Cl<sub>7</sub>, NaHo<sub>2</sub>Cl<sub>7</sub>, and K<sub>3</sub>Yb<sub>2</sub>Cl<sub>9</sub>

Finally a somewhat speculative issue: As the example  $Cs_3NdCl_6$  has shown, reconstructive solid-state reactions, like formation and decomposition, do not occur below ~250°C, because of the very low mobility of the ions in the crystal lattice. Thus, it might be possible that compounds, formed at temperatures <0°C, for instance by matrix isolation, are kept metastable at ambient temperature. Candidates could be compounds ALnCl<sub>4</sub> with tetrahedral coordination of the Ln<sup>3+</sup> ions. Such species were observed in the gaseous-state.

#### Acknowledgements

I wish to thank Prof. emer. Roger Blachnik for critical reading the manuscript and Prof. Malcolm Schrader, The Hebrew University Jerusalem, for smoothening the English of this paper.

## References

- 1 H. J. Seifert, J. Therm. Anal. Cal., 67 (2002) 789.
- 2 S. Mitra, J. Uebach and H. J. Seifert, J. Solid State Chem., 115 (1995) 484.

- 3 H. J. Seifert and R. Krämer, Z. Anorg. Allg. Chem., 620 (1994) 1534.
- 4 M. Roffe and H. J. Seifert, J. Alloys Compd., 257 (1997) 128.
- 5 H. J. Seifert and D. Büchel, Z. Anorg. Allg. Chem., 624 (1998) 342.
- 6 D. Büchel, J. Krok-Kowalski and H. J. Seifert, Thermochim. Acta, 282/283 (1995) 297.
- 7 H. Duda and H. J. Seifert, Z. Anorg. Allg. Chem., 627 (2001) 2317.
- 8 C. Zheng and H. J. Seifert, J. Solid State Chem., 135 (1998) 127.
- 9 J. Sebastian and H. J. Seifert, Thermochim. Acta, 318 (1998) 29.
- 10 H. J. Seifert, J. Sandrock and J. Uebach, Acta Chem. Scand., 49 (1995) 653.
- 11 H. J. Seifert and J. Sandrock, Z. Anorg. Allg. Chem., 623 (1997) 1525.
- 12 D. Büchel and H. J. Seifert, J. Therm. Anal. Cal., 57 (1999) 203.
- 13 G. Reuter and G. Frenzen, J. Solid State Chem., 116 (1995) 329.
- 14 G. Reuter, J. Sebastian and G. Frenzen, Acta Crystallogr., C 52 (1996) 1859.
- 15 G. Reuter, J. Sebastian, M. Roffe and H. J. Seifert, Thermochim. Acta, 296 (1997) 47.
- 16 Fam Ngok T'en and I. S. Morozov, Zh. Neorg. Khim., 14 (1969) 1361.
- 17 D. V. Drobot, G. Anikina, L. V. Durinina and B. G. Kornushov, Zh. Neorg. Khim., 10 (1965) 562.
- 18 D. V. Drobot, B. G. Korshunov and G. P. Borodulenko, Zh. Neorg. Khim., 13 (1968) 1635.
- 19 Gmelin, Handb. D. Anorg. Chem., 8. Aufl., C5, Springer-Verlag, Berlin/Heidelberg 1977.
- 20 V. I. Prosypaiko and E. A. Allkseeva, 'Phase Equilibria in Binary Halides', Ed. by H. B. Bell.- IFI/Plenum, New York 1987.
- 21 B. G. Korshunov and D. V. Drobot, Zh. Neorg. Khim., 10 (1965) 939.
- 22 F. N. Thien and I. S. Morozov, Zh. Neorg. Khim., 16 (1971).
- 23 J. Kutscher and A. Schneider, Z. Anorg. Allg. Chem., 408 (1974) 135.
- 24 R. Blachnik and D. Selle, Z. Anorg. Allg. Chem., 454 (1979) 90.
- 25 M. Gaune-Escard, L. Rycerz and A. Bogacz, J. Alloys Compd., 204 (1994) 185.
- 26 L. Rycerz and M. Gaune-Escard, J. High Temp. Mat. Processes, 2 (1998) 483.
- 27 Z. Qiao, W. Zhuang and M. Su, Sci. in China, A35 (1992) 957.
- 28 J. F. Miller, S. E. Miller and R. C. Himes, J. Amer. Chem. Soc., 81 (1959) 444.
- 29 I. S. Morozov, Zh. Neorg. Khim., 14 (1969) 1361.
- 30 J. Mochinaga, K. Igarashi, T. Aoki and Y. Iwadate, Bull. Chem. Soc. Japan, 51 (1978) 3107.
- 31 R. Förthmann and A. Schneider, Z. Anorg. Allg. Chem., 367 (1969) 27.
- 32 G. Meyer and P. Ax, Mater. Res. Bull., 17 (1982) 1447.
- 33 G. Meyer, Inorg. Synth., 25 (1989) 146.
- 34 H. J. Seifert and S. Funke, Thermochim. Acta, 320 (1998) 1.
- 35 D. H. Templeton and C. H. Dauben, J. Amer. Chem. Soc., 76 (1954) 5237.

- 36 D. H. Templeton and G. F. Carter, J. Phys. Chem., 58 (1954) 940.
- 37 J. D. Forrester, A. Zalkin, D. H. Templeton and J. C. Wallmann, Inorg. Chem., 3 (1964) 185.
- 38 H. Gunsilius, H. Borrmann, A. Simon and W. Urland, Z. Naturforsch., 43b (1988) 1023.
- 39 V. F. Goryuschkin, S. A. Zalymova and A. I. Poshevneva, Zh. Neorg. Khim., 35 (1990) 3081.
- 40 L. D. Polyachenok, L. D. Nazarov and O. G. Polyachenok, Russ. J. Phys. Chem., 52 (1978) 1021.
- 41 M. Gaune-Escard, L. Rycerz, W. Szczepaniak and A. Bogacz, J. Alloys Compd., 204 (1994) 193.
- 42 V. F. Goryushkin, Zh. Neorg. Khim., 41 (1996) 817.
- 43 I. A. Kahwa, J. Thermal Anal., 25 (1982) 529.
- 44 E. H. P. Cordfunke and R. J. M. Konings, Thermochim. Acta, 375 (2001) 17.
- 45 J. Mochinaga, Y. Iwadate, K. Fukushima and K. Igarashi, Mater. Sci. Forum, 73–75 (1991) 147 and J. Electrochem. Soc., 138 (1991) 3588.
- 46 K. Igarashi and J. Mochinaga, Z. Naturforsch., 42a (1987) 777.
- 47 H. J. Seifert, J. Therm. Anal. Cal., 82 (2005) 575.
- 48 H. J. Seifert, J. Thermal Anal., 49 (1997) 1207.
- 49 B. G. Korshunov, D. V. Drobot, G. P. Borodulenko and I. E. Galchenko, Zh. Neorg. Khim., 11 (1966) 1013.
- 50 B. G. Korshunov, D. V. Drobot, I. E. Galchenko and Z. N. Shevtsova, Zh. Neorg. Khim., 11 (1966) 411.
- 51 B. G. Korshunov and D. V. Drobot, Zh. Neorg Khim., 10 (1965) 2310.
- 52 I. S. Morosov, Z. N. Shevtsova and Li Chih-ta, Zh. Neorg Khim., 9 (1964) 2606.
- 53 B. G. Korshunov and D. V. Drobot, Zh. Neorg. Khim., 9 (1964) 222.
- 54 G. I. Novikov, O. G. Polyachenok and S. A. Frid, Zh. Neorg. Khim., 9 (1964) 472.
- 55 M. Prien and H. J. Seifert, J. Thermal Anal., 45 (1995) 349.
- 56 G. Meyer, Progr. Solid State Chem., 14 (1982) 141.
- 57 G. Reuter, H. Fink and G. Frenzen, J. Solid State Chem., 126 (1996) 44.
- 58 G. Reuter, M. Roffe and G. Frenzen, Z. Anorg. Allg. Chem., 621 (1995) 630.
- 59 G. Meyer, Z. Anorg. Allg. Chem., 469 (1980) 89.
- 60 G. Meyer and A. Schönemund, Mater. Res. Bull., 15 (1980) 89.
- 61 G. Meyer, Eur. J. Solid State Chem., 28 (1991) 1209.
- 62 M. B. Varfolomeev, P. B. Shamrai, A. V. Markov, V. A. Abramets and D. V. Drobot, Zh. Neorg. Khim., 29 (1984) 929.
- 63 F. Benachenhou, G. Mairesse, G. Nowogrocky and D. Thomas, J. Solid State Chem., 65 (1986) 13.
- 64 Z. Amilius, B. van Laar and H. M. Rietveld, Acta Crystallogr., B 25 (1969) 400.

- 65 H. Mattfeld and G. Meyer, Z. Anorg. Allg. Chem., 618 (1992) 13.
- 66 G. Meyer and E. Hüttl, Z. Anorg. Allg. Chem., 497 (1983) 191.
- 67 W. Jeitschko and P. C. Donohue, Acta Crystallogr., B31 (1975) 1890.
- 68 G. Meyer, J. Soose, A. Moritz, V. Vitt and T. Holljes, Z. Anorg. Allg. Chem., 521 (1981) 161.
- 69 G. Meyer, Z. Anorg. Allg. Chem., 491 (1982) 217.
- 70 J. L. Hoard and L. Goldstein, J. Chem. Phys., 3 (1935) 1008.
- 71 H. M. Powell and A. F. Wells, J. Chem. Soc., London 1935, p. 1008.
- 72 R. D. Shannon, Acta Crystallogr., A 32 (1976) 751.
- 73 M. Wickleder and G. Meyer, Z. Anorg. Allg. Chem., 621 (1995) 457.
- 74 M. Böcker, N. Gerlitzki and G. Meyer, Z. Kristallogr., NCS 216 (2001) 19.
- 75 G. Meyer, P. Ax, T. Schleid and M. Irmler, Z. Anorg. Allg. Chem., 554 (1987) 25.
- 76 F. Stenzel and G. Meyer, Z. Anorg. Allg. Chem., 619 (1993) 652.
- 77 G. Meyer, P. Ax, A. Cromm and H. Linzmeier, J. Less-Common Metals, 98 (1984) 323.
- 78 T. Schleid and G. Meyer, Z. Kristallogr., 210 (1995) 145.
- 79 J. Drozdzynski, K. Kossowski, G. Meyer, I. Müller and M. S. Wickleder, Z. Kristallogr., NCS 216 (2001) 179.
- 80 T. Schleid and G. Meyer, Z. Anorg. Allg. Chem., 590 (1990) 103.
- 81 M. S. Wickleder and G. Meyer, Z. Anorg. Allg. Chem., 621 (1995) 546.
- 82 M. S. Wickleder, H. U, Güdel, T. Armbruster and G. Meyer, Z. Anorg. Allg. Chem., 622 (1996) 785.
- 83 G. Thiel and H. J. Seifert, Thermochim. Acta, 22 (1978) 363.
- 84 R. Blachnik and D. Selle, Z. Anorg. Allg. Chem., 454 (1979) 82.
- 85 H. J. Seifert and G. Thiel, J. Chem. Thermodyn., 14 (1982) 1159.
- 86 G. Reuter and H. J. Seifert, Thermochim. Acta, 237 (1994) 219.
- 87 H. J. Seifert, H. Fink and B. Baumgärtner, J. Solid State Chem., 107 (1993) 19.
- 88 J. Burgess and J. Kijowski, Advanc. Inorg. Chem. Radiochem., 24 (1981) 57.

Received: June 20, 2005 Accepted: August 10, 2005

DOI: 10.1007/s10973-005-7132-7